These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 29495600)
41. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440 [TBL] [Abstract][Full Text] [Related]
42. Accuracy of Temporo-Spatial and Lower Limb Joint Kinematics Parameters Using OpenPose for Various Gait Patterns With Orthosis. Yamamoto M; Shimatani K; Hasegawa M; Kurita Y; Ishige Y; Takemura H IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2666-2675. PubMed ID: 34914592 [TBL] [Abstract][Full Text] [Related]
43. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787 [TBL] [Abstract][Full Text] [Related]
44. Agreement between Azure Kinect and Marker-Based Motion Analysis during Functional Movements: A Feasibility Study. Jo S; Song S; Kim J; Song C Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560187 [TBL] [Abstract][Full Text] [Related]
45. Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations. Lebleu J; Gosseye T; Detrembleur C; Mahaudens P; Cartiaux O; Penta M Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012906 [TBL] [Abstract][Full Text] [Related]
46. Using Inertial Measurement Unit Sensor Single Axis Rotation Angles for Knee and Hip Flexion Angle Calculations During Gait. Oliveira N; Park J; Barrance P IEEE J Transl Eng Health Med; 2023; 11():80-86. PubMed ID: 36704243 [TBL] [Abstract][Full Text] [Related]
47. Instrumented triple single-leg hop test: A validated method for ambulatory measurement of ankle and knee angles using inertial sensors. Ahmadian N; Nazarahari M; Whittaker JL; Rouhani H Clin Biomech (Bristol); 2020 Dec; 80():105134. PubMed ID: 32768803 [TBL] [Abstract][Full Text] [Related]
48. Movement Analysis in Orthopedics and Trauma Surgery - Measurement Systems and Clinical Applications. Oppelt K; Hogan A; Stief F; Grützner PA; Trinler U Z Orthop Unfall; 2020 Jun; 158(3):304-317. PubMed ID: 31291674 [TBL] [Abstract][Full Text] [Related]
49. Agreement between An Inertia and Optical Based Motion Capture during the VU-Return-to-Play- Field-Test. Richter C; Daniels KAJ; King E; Franklyn-Miller A Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033123 [TBL] [Abstract][Full Text] [Related]
50. Inter-rater reliability of Dartfish Allen T; Hollingham Z; MacWhirter J; Welsh M; Negm A; Adachi JD; MacIntyre NJ Physiother Theory Pract; 2019 Jun; 35(6):577-585. PubMed ID: 29589776 [TBL] [Abstract][Full Text] [Related]
51. Investigating concurrent validity of inertial sensors to evaluate multiplanar spine movement. Beange KHE; Chan ADC; Graham RB J Biomech; 2024 Feb; 164():111939. PubMed ID: 38310004 [TBL] [Abstract][Full Text] [Related]
52. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. Nüesch C; Roos E; Pagenstert G; Mündermann A J Biomech; 2017 May; 57():32-38. PubMed ID: 28366438 [TBL] [Abstract][Full Text] [Related]
53. Measurement of lower limb joint kinematics using inertial sensors during stair ascent and descent in healthy older adults and stroke survivors. Laudanski A; Brouwer B; Li Q J Healthc Eng; 2013; 4(4):555-76. PubMed ID: 24287432 [TBL] [Abstract][Full Text] [Related]
54. Validity and Reliability of Inertial Measurement Unit (IMU)-Derived 3D Joint Kinematics in Persons Wearing Transtibial Prosthesis. Rattanakoch J; Samala M; Limroongreungrat W; Guerra G; Tharawadeepimuk K; Nanbancha A; Niamsang W; Kerdsomnuek P; Suwanmana S Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772783 [TBL] [Abstract][Full Text] [Related]
55. Lower limb kinematics improvement after genicular nerve blockade in patients with knee osteoarthritis: a milestone study using inertial sensors. Lebleu J; Fonkoue L; Bandolo E; Fossoh H; Mahaudens P; Cornu O; Detrembleur C BMC Musculoskelet Disord; 2020 Dec; 21(1):822. PubMed ID: 33287783 [TBL] [Abstract][Full Text] [Related]
56. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors. Fantozzi S; Giovanardi A; Borra D; Gatta G PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131 [TBL] [Abstract][Full Text] [Related]
57. High day-to-day repeatability of lower extremity muscle activation patterns and joint biomechanics of dual-belt treadmill gait: A reliability study in healthy young adults. Rutherford DJ; Moyer R; Baker M; Saleh S J Electromyogr Kinesiol; 2020 Apr; 51():102401. PubMed ID: 32087511 [TBL] [Abstract][Full Text] [Related]
58. Test-retest reliability of 3D kinematic gait variables in hip osteoarthritis patients. Laroche D; Duval A; Morisset C; Beis JN; d'Athis P; Maillefert JF; Ornetti P Osteoarthritis Cartilage; 2011 Feb; 19(2):194-9. PubMed ID: 21056679 [TBL] [Abstract][Full Text] [Related]
59. Validity and Sensitivity of an Inertial Measurement Unit-Driven Biomechanical Model of Motor Variability for Gait. Bailey CA; Uchida TK; Nantel J; Graham RB Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833766 [TBL] [Abstract][Full Text] [Related]
60. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals. Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]