These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29495689)

  • 1. Temporal weighting functions for interaural time and level differences. V. Modulated noise carriers.
    Stecker GC
    J Acoust Soc Am; 2018 Feb; 143(2):686. PubMed ID: 29495689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal weighting functions for interaural time and level differences. IV. Effects of carrier frequency.
    Stecker GC
    J Acoust Soc Am; 2014 Dec; 136(6):3221. PubMed ID: 25480069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal weighting functions for interaural time and level differences. III. Temporal weighting for lateral position judgments.
    Stecker GC; Ostreicher JD; Brown AD
    J Acoust Soc Am; 2013 Aug; 134(2):1242-52. PubMed ID: 23927122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateralization of noise-burst trains based on onset and ongoing interaural delays.
    Freyman RL; Balakrishnan U; Zurek PM
    J Acoust Soc Am; 2010 Jul; 128(1):320-31. PubMed ID: 20649227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverberation enhances onset dominance in sound localization.
    Stecker GC; Moore TM
    J Acoust Soc Am; 2018 Feb; 143(2):786. PubMed ID: 29495688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution temporal weighting of interaural time differences in speech.
    Baltzell LS; Best V
    J Acoust Soc Am; 2021 Aug; 150(2):1311. PubMed ID: 34470281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal weighting of interaural time and level differences in high-rate click trains.
    Brown AD; Stecker GC
    J Acoust Soc Am; 2010 Jul; 128(1):332-41. PubMed ID: 20649228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences.
    Bibee JM; Stecker GC
    J Acoust Soc Am; 2016 Oct; 140(4):2584. PubMed ID: 27794286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength of onset and ongoing cues in judgments of lateral position.
    Freyman RL; Zurek PM
    J Acoust Soc Am; 2017 Jul; 142(1):206. PubMed ID: 28764482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of envelope shape on the lateralization of amplitude-modulated, low-frequency sound.
    Haywood NR; Undurraga JA; McAlpine D
    J Acoust Soc Am; 2021 May; 149(5):3133. PubMed ID: 34241105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of interaural decoherence on sensitivity to interaural level differences across frequency.
    Brown AD; Tollin DJ
    J Acoust Soc Am; 2021 Jun; 149(6):4630. PubMed ID: 34241434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the influence of interaural differences on temporal perception of noise bursts of different durations.
    Schimmel O; Kohlrausch A
    J Acoust Soc Am; 2008 Feb; 123(2):986-97. PubMed ID: 18247901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity to brief changes of interaural time and interaural intensity.
    Bernstein LR; Trahiotis C; Akeroyd MA; Hartung K
    J Acoust Soc Am; 2001 Apr; 109(4):1604-15. PubMed ID: 11325131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the perceptual weighting of interaural time difference cues in amplitude modulated binaural beats.
    Haywood NR; McAlpine D
    J Acoust Soc Am; 2020 Aug; 148(2):EL185. PubMed ID: 32872987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observer weighting of interaural cues in positive and negative envelope slopes of amplitude-modulated waveforms.
    Hsieh IH; Petrosyan A; Gonçalves ÓF; Hickok G; Saberi K
    Hear Res; 2011 Jul; 277(1-2):143-51. PubMed ID: 21272630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal weighting of binaural information at low frequencies: Discrimination of dynamic interaural time and level differences.
    Diedesch AC; Stecker GC
    J Acoust Soc Am; 2015 Jul; 138(1):125-33. PubMed ID: 26233013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound-direction identification, interaural time delay discrimination, and speech intelligibility advantages in noise for a bilateral cochlear implant user.
    Van Hoesel R; Ramsden R; Odriscoll M
    Ear Hear; 2002 Apr; 23(2):137-49. PubMed ID: 11951849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The precedence effect and its possible role in the avoidance of interaural ambiguities.
    Zurek PM
    J Acoust Soc Am; 1980 Mar; 67(3):953-64. PubMed ID: 7358920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of noise on time-intensity trading in lateralization.
    Gaskell H; Henning GB
    Hear Res; 1981 May; 4(2):161-74. PubMed ID: 7240023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.