These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29495732)

  • 1. Plane nonlinear shear waves in relaxing media.
    Cormack JM; Hamilton MF
    J Acoust Soc Am; 2018 Feb; 143(2):1035. PubMed ID: 29495732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear reflection of shock shear waves in soft elastic media.
    Pinton G; Coulouvrat F; Gennisson JL; Tanter M
    J Acoust Soc Am; 2010 Feb; 127(2):683-91. PubMed ID: 20136190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modified Khokhlov-Zabolotskaya equation governing shear waves in a prestrained hyperelastic solid.
    Cramer MS; Andrews MF
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1821-32. PubMed ID: 14587583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piecewise parabolic method for propagation of shear shock waves in relaxing soft solids: One-dimensional case.
    Tripathi BB; Espíndola D; Pinton GF
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3187. PubMed ID: 30861631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.
    Kumon RE; Hamilton MF
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2060-9. PubMed ID: 12051426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution equation for nonlinear Lucassen waves, with application to a threshold phenomenon.
    Simon BE; Cormack JM; Hamilton MF
    J Acoust Soc Am; 2021 Nov; 150(5):3648. PubMed ID: 34852582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain.
    Giammarinaro B; Coulouvrat F; Pinton G
    J Biomech Eng; 2016 Apr; 138(4):041003. PubMed ID: 26833489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of self-similar plane shocks with Hertzian nonlinearity.
    McDonald BE
    J Acoust Soc Am; 2006 Dec; 120(6):3503-8. PubMed ID: 17225380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large internal solitary waves on a weak shear.
    Derzho OG
    Chaos; 2022 Jun; 32(6):063130. PubMed ID: 35778136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Fresnel diffraction of weak shock waves.
    Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1749-57. PubMed ID: 14587577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plane nonlinear shear wave propagation in transversely isotropic soft solids.
    Cormack JM
    J Acoust Soc Am; 2021 Oct; 150(4):2566. PubMed ID: 34717504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear surface waves in soft, weakly compressible elastic media.
    Zabolotskaya EA; Ilinskii YA; Hamilton MF
    J Acoust Soc Am; 2007 Apr; 121(4):1873-8. PubMed ID: 17471703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids.
    Vanhille C; Campos-Pozuelo C
    J Acoust Soc Am; 2001 Jun; 109(6):2660-7. PubMed ID: 11425108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear shear wave interaction in soft solids.
    Jacob X; Catheline S; Gennisson JL; Barrière C; Royer D; Fink M
    J Acoust Soc Am; 2007 Oct; 122(4):1917-26. PubMed ID: 17902828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cubic nonlinearity and surface shock waves in soft tissue-like materials.
    Alarcón H; Galaz B; Espíndola D
    Ultrasonics; 2025 Jan; 145():107469. PubMed ID: 39341008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability.
    Zavershinskii DI; Molevich NE; Riashchikov DS; Belov SA
    Phys Rev E; 2020 Apr; 101(4-1):043204. PubMed ID: 32422698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cubic nonlinearity in shear wave beams with different polarizations.
    Wochner MS; Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2008 May; 123(5):2488-95. PubMed ID: 18529167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical formulation for nonlinear ultrasonic waves propagation in fluids.
    Vanhille C; Campos-Pozuelo C
    Ultrasonics; 2004 Aug; 42(10):1123-8. PubMed ID: 15234174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.