These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Piecewise parabolic method for propagation of shear shock waves in relaxing soft solids: One-dimensional case. Tripathi BB; Espíndola D; Pinton GF Int J Numer Method Biomed Eng; 2019 May; 35(5):e3187. PubMed ID: 30861631 [TBL] [Abstract][Full Text] [Related]
5. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals. Kumon RE; Hamilton MF J Acoust Soc Am; 2002 May; 111(5 Pt 1):2060-9. PubMed ID: 12051426 [TBL] [Abstract][Full Text] [Related]
6. Evolution equation for nonlinear Lucassen waves, with application to a threshold phenomenon. Simon BE; Cormack JM; Hamilton MF J Acoust Soc Am; 2021 Nov; 150(5):3648. PubMed ID: 34852582 [TBL] [Abstract][Full Text] [Related]
7. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain. Giammarinaro B; Coulouvrat F; Pinton G J Biomech Eng; 2016 Apr; 138(4):041003. PubMed ID: 26833489 [TBL] [Abstract][Full Text] [Related]
8. Stability of self-similar plane shocks with Hertzian nonlinearity. McDonald BE J Acoust Soc Am; 2006 Dec; 120(6):3503-8. PubMed ID: 17225380 [TBL] [Abstract][Full Text] [Related]
9. Large internal solitary waves on a weak shear. Derzho OG Chaos; 2022 Jun; 32(6):063130. PubMed ID: 35778136 [TBL] [Abstract][Full Text] [Related]
17. Cubic nonlinearity in shear wave beams with different polarizations. Wochner MS; Hamilton MF; Ilinskii YA; Zabolotskaya EA J Acoust Soc Am; 2008 May; 123(5):2488-95. PubMed ID: 18529167 [TBL] [Abstract][Full Text] [Related]
18. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids. Tejedor Sastre MT; Vanhille C Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316 [TBL] [Abstract][Full Text] [Related]
19. Rogue wave modes for a derivative nonlinear Schrödinger model. Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920 [TBL] [Abstract][Full Text] [Related]
20. A numerical formulation for nonlinear ultrasonic waves propagation in fluids. Vanhille C; Campos-Pozuelo C Ultrasonics; 2004 Aug; 42(10):1123-8. PubMed ID: 15234174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]