These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29495779)

  • 1. Trapping of diffusing particles by spiky absorbers.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2018 Feb; 148(8):084103. PubMed ID: 29495779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping of diffusing particles by short absorbing spikes periodically protruding from reflecting base.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2018 Jul; 149(4):044106. PubMed ID: 30068203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping of diffusing particles by small absorbers localized in a spherical region.
    Berezhkovskii AM; Dagdug L; Bezrukov SM
    J Chem Phys; 2019 Feb; 150(6):064107. PubMed ID: 30769973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of single diffusing particles by a circular disk on a reflecting flat surface. Absorbing hemisphere approximation.
    Dagdug L; Berezhkovskii AM; Bezrukov SM
    Phys Chem Chem Phys; 2023 Jan; 25(3):2035-2042. PubMed ID: 36546317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state flux of diffusing particles to a rough boundary formed by absorbing spikes periodically protruding from a reflecting base.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2019 May; 150(19):194109. PubMed ID: 31117790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping of diffusing particles by clusters of absorbing disks on a reflecting wall with disk centers on sites of a square lattice.
    Berezhkovskii AM; Dagdug L; Vazquez MV; Lizunov VA; Zimmerberg J; Bezrukov SM
    J Chem Phys; 2013 Feb; 138(6):064105. PubMed ID: 23425459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary homogenization for trapping by patchy surfaces.
    Berezhkovskii AM; Makhnovskii YA; Monine MI; Zitserman VY; Shvartsman SY
    J Chem Phys; 2004 Dec; 121(22):11390-4. PubMed ID: 15634098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach.
    Dagdug L; Berezhkovskii AM; Skvortsov AT
    J Chem Phys; 2015 Jun; 142(23):234902. PubMed ID: 26093574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion toward a nanoforest of absorbing pillars.
    Grebenkov DS; Skvortsov AT
    J Chem Phys; 2022 Dec; 157(24):244102. PubMed ID: 36586989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping by clusters of channels, receptors, and transporters: quantitative description.
    Berezhkovskii AM; Dagdug L; Lizunov VA; Zimmerberg J; Bezrukov SM
    Biophys J; 2014 Feb; 106(3):500-9. PubMed ID: 24507591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle lifetime in cylindrical cavity with absorbing spot on the wall: Going beyond the narrow escape problem.
    Dagdug L; Berezhkovskii AM; Bezrukov SM
    J Chem Phys; 2012 Dec; 137(23):234108. PubMed ID: 23267472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brownian diffusion of ion channels in different membrane patch geometries.
    Wei F; Yang D; Straube R; Shuai J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021919. PubMed ID: 21405875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping of particles diffusing in two dimensions by a hidden binding site.
    Dagdug L; Berezhkovskii AM; Zitserman VY; Bezrukov SM
    Phys Rev E; 2021 Jan; 103(1-1):012135. PubMed ID: 33601544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boundary homogenization for a sphere with an absorbing cap of arbitrary size.
    Dagdug L; Vázquez MV; Berezhkovskii AM; Zitserman VY
    J Chem Phys; 2016 Dec; 145(21):214101. PubMed ID: 28799376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.
    Rahmanzadeh M; Rajabalipanah H; Abdolali A
    Appl Opt; 2018 Feb; 57(4):959-968. PubMed ID: 29400774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization.
    Skvortsov AT; Dagdug L; Berezhkovskii AM; MacGillivray IR; Bezrukov SM
    Phys Rev E; 2021 Jan; 103(1-1):012408. PubMed ID: 33601596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mean first passage time for a particle diffusing on a disk with two absorbing traps at the boundary.
    Skvortsov A
    Phys Rev E; 2020 Jul; 102(1-1):012123. PubMed ID: 32794954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analyses of the sound absorption of cylindrical microperforated panel space absorbers with cores.
    Toyoda M; Fujita S; Sakagami K
    J Acoust Soc Am; 2015 Dec; 138(6):3531-8. PubMed ID: 26723310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Frequency Model for Radio-Frequency Absorbers.
    Randa J
    J Res Natl Inst Stand Technol; 1995; 100(3):257-267. PubMed ID: 29151739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Clusters of absorbing disks on a reflecting wall: competition for diffusing particles.
    Berezhkovskii AM; Dagdug L; Lizunov VA; Zimmerberg J; Bezrukov SM
    J Chem Phys; 2012 Jun; 136(21):211102. PubMed ID: 22697521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.