These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 29495817)

  • 1. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum.
    Mikhailov IF; Baturin AA; Mikhailov AI; Borisova SS; Fomina LP
    Rev Sci Instrum; 2018 Feb; 89(2):023103. PubMed ID: 29495817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sample mass determination using Compton- and total scattered excitation radiation for energy-dispersive x-ray fluorescent analysis of trace elements in soft tissue specimens.
    Cox HL; ong PS
    Med Phys; 1977; 4(2):99-108. PubMed ID: 850514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Authentication of vegetable oils by confocal X-ray scattering analysis with coherent/incoherent scattered X-rays.
    Li F; Liu Z; Sun T
    Food Chem; 2016 Nov; 210():435-41. PubMed ID: 27211668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of 12 elements in coal ash by x-ray fluorescence spectrometry].
    Song Y; Guo F; Gu SH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1430-4. PubMed ID: 18800742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of a high-pressure pressed powder pellet technique for the analysis of coal by wavelength dispersive X-ray fluorescence spectroscopy.
    Li XL; An SQ; Liu YX; Yu ZS; Zhang Q
    Appl Radiat Isot; 2018 Feb; 132():170-177. PubMed ID: 29248783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Express measurement of solid fuel ash content by nuclear gamma-method.
    Pak Y; Pak D; Ponomaryova М; Imanov М; Balbekova B
    Appl Radiat Isot; 2019 May; 147():54-58. PubMed ID: 30802741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overestimations in zero frequency DQE of x-ray imaging converters assessed by Monte Carlo techniques based on the study of energy impartation events.
    Liaparinos PF; Kandarakis IS
    Med Phys; 2011 Jul; 38(7):4440-50. PubMed ID: 21859045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaining improved chemical composition by exploitation of Compton-to-Rayleigh intensity ratio in XRF analysis.
    Hodoroaba VD; Rackwitz V
    Anal Chem; 2014 Jul; 86(14):6858-64. PubMed ID: 24950635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products.
    Goodarzi F; Huggins F
    J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of copper in coal fly ash in the presence of excess titanium by dynamic reaction cell inductively coupled plasma mass spectrometry.
    Liu HT; Jiang SJ
    Anal Bioanal Chem; 2003 Jan; 375(2):306-9. PubMed ID: 12560978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.
    Richaud R; Lazaro MJ; Lachas H; Miller BB; Herod AA; Dugwell DR; Kandiyoti R
    Rapid Commun Mass Spectrom; 2000; 14(5):317-28. PubMed ID: 10700033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.
    Sitko R; Zawisza B; Kowalewska Z; Kocot K; Polowniak M
    Talanta; 2011 Sep; 85(4):2000-6. PubMed ID: 21872051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique.
    Tiwari M; Sahu SK; Bhangare RC; Ajmal PY; Pandit GG
    Appl Radiat Isot; 2014 Aug; 90():53-7. PubMed ID: 24685495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monte Carlo study of x-ray fluorescence in x-ray detectors.
    Boone JM; Seibert JA; Sabol JM; Tecotzky M
    Med Phys; 1999 Jun; 26(6):905-16. PubMed ID: 10436891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic coal washing to leach alkali elements from coals.
    Balakrishnan S; Reddy VM; Nagarajan R
    Ultrason Sonochem; 2015 Nov; 27():235-240. PubMed ID: 26186840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry.
    Prahalad AK; Soukup JM; Inmon J; Willis R; Ghio AJ; Becker S; Gallagher JE
    Toxicol Appl Pharmacol; 1999 Jul; 158(2):81-91. PubMed ID: 10406923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elemental analysis of coal and coal ASH by PIXE technique.
    Patra KC; Rautray TR; Tripathy BB; Nayak P
    Appl Radiat Isot; 2012 Apr; 70(4):612-6. PubMed ID: 22204786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.
    Smith KR; Veranth JM; Lighty JS; Aust AE
    Chem Res Toxicol; 1998 Dec; 11(12):1494-500. PubMed ID: 9860493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Determination of the content of sulfur of coal by the infrared absorption method with high acccuracy].
    Wang HF; Lu H; Li J; Sun GH; Wang J; Dai XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):370-5. PubMed ID: 24822403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid and sensitive resonance Rayleigh scattering spectra method for the determination of quinolones in human urine and pharmaceutical preparation.
    Qiao M; Wang Y; Liu S; Liu Z; Yang J; Zhu J; Hu X
    Luminescence; 2015 Mar; 30(2):207-15. PubMed ID: 24976410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.