BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29495905)

  • 1. Possible targets to treat myeloma-related osteoclastogenesis.
    Bolzoni M; Toscani D; Storti P; Marchica V; Costa F; Giuliani N
    Expert Rev Hematol; 2018 Apr; 11(4):325-336. PubMed ID: 29495905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging treatment approaches for myeloma-related bone disease.
    Gavriatopoulou M; Dimopoulos MA; Kastritis E; Terpos E
    Expert Rev Hematol; 2017 Mar; 10(3):217-228. PubMed ID: 28092987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition.
    Giuliani N; Rizzoli V; Roodman GD
    Blood; 2006 Dec; 108(13):3992-6. PubMed ID: 16917004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myeloma bone disease: pathogenesis, current treatments and future targets.
    Walker RE; Lawson MA; Buckle CH; Snowden JA; Chantry AD
    Br Med Bull; 2014 Sep; 111(1):117-38. PubMed ID: 25190762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.
    Heath DJ; Vanderkerken K; Cheng X; Gallagher O; Prideaux M; Murali R; Croucher PI
    Cancer Res; 2007 Jan; 67(1):202-8. PubMed ID: 17210700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the PI3K inhibitor BKM120 on tumour growth and osteolytic bone disease in multiple myeloma.
    Martin SK; Gan ZY; Fitter S; To LB; Zannettino AC
    Leuk Res; 2015 Mar; 39(3):380-7. PubMed ID: 25624048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteocyte CIITA aggravates osteolytic bone lesions in myeloma.
    Liu H; He J; Bagheri-Yarmand R; Li Z; Liu R; Wang Z; Bach DH; Huang YH; Lin P; Guise TA; Gagel RF; Yang J
    Nat Commun; 2022 Jun; 13(1):3684. PubMed ID: 35760800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Management of Myeloma Bone Lesions.
    Du JS; Yen CH; Hsu CM; Hsiao HH
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33806209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenesis of bone disease in multiple myeloma: from bench to bedside.
    Terpos E; Ntanasis-Stathopoulos I; Gavriatopoulou M; Dimopoulos MA
    Blood Cancer J; 2018 Jan; 8(1):7. PubMed ID: 29330358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenesis and management of myeloma bone disease.
    Christoulas D; Terpos E; Dimopoulos MA
    Expert Rev Hematol; 2009 Aug; 2(4):385-98. PubMed ID: 21082944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo.
    Farrugia AN; Atkins GJ; To LB; Pan B; Horvath N; Kostakis P; Findlay DM; Bardy P; Zannettino AC
    Cancer Res; 2003 Sep; 63(17):5438-45. PubMed ID: 14500379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosphingolipid synthesis inhibition limits osteoclast activation and myeloma bone disease.
    Ersek A; Xu K; Antonopoulos A; Butters TD; Santo AE; Vattakuzhi Y; Williams LM; Goudevenou K; Danks L; Freidin A; Spanoudakis E; Parry S; Papaioannou M; Hatjiharissi E; Chaidos A; Alonzi DS; Twigg G; Hu M; Dwek RA; Haslam SM; Roberts I; Dell A; Rahemtulla A; Horwood NJ; Karadimitris A
    J Clin Invest; 2015 Jun; 125(6):2279-92. PubMed ID: 25915583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibodies against RANKL and sclerostin for myeloma-related bone disease: can they change the standard of care?
    Kleber M; Ntanasis-Stathopoulos I; Dimopoulos MA; Terpos E
    Expert Rev Hematol; 2019 Aug; 12(8):651-663. PubMed ID: 31268745
    [No Abstract]   [Full Text] [Related]  

  • 14. Cellular mechanisms of multiple myeloma bone disease.
    Oranger A; Carbone C; Izzo M; Grano M
    Clin Dev Immunol; 2013; 2013():289458. PubMed ID: 23818912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted disruption of the CXCL12/CXCR4 axis inhibits osteolysis in a murine model of myeloma-associated bone loss.
    Diamond P; Labrinidis A; Martin SK; Farrugia AN; Gronthos S; To LB; Fujii N; O'Loughlin PD; Evdokiou A; Zannettino AC
    J Bone Miner Res; 2009 Jul; 24(7):1150-61. PubMed ID: 19335218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting pathways mediating bone disease.
    Giuliani N; Morandi F; Tagliaferri S; Rizzoli V
    Curr Pharm Biotechnol; 2006 Dec; 7(6):423-9. PubMed ID: 17168658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease.
    Croucher PI; Shipman CM; Van Camp B; Vanderkerken K
    Cancer; 2003 Feb; 97(3 Suppl):818-24. PubMed ID: 12548581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment strategies for bone disease.
    Roodman GD
    Bone Marrow Transplant; 2007 Dec; 40(12):1139-46. PubMed ID: 17680018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Evidence-Based Approach to Myeloma Bone Disease.
    Bingham N; Reale A; Spencer A
    Curr Hematol Malig Rep; 2017 Apr; 12(2):109-118. PubMed ID: 28243849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation.
    Raimondi L; De Luca A; Amodio N; Manno M; Raccosta S; Taverna S; Bellavia D; Naselli F; Fontana S; Schillaci O; Giardino R; Fini M; Tassone P; Santoro A; De Leo G; Giavaresi G; Alessandro R
    Oncotarget; 2015 May; 6(15):13772-89. PubMed ID: 25944696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.