These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29496019)

  • 1. Insights on the thermal impacts of wing colorization of migrating birds on their skin friction drag and the choice of their flight route.
    Hassanalian M; Ayed SB; Ali M; Houde P; Hocut C; Abdelkefi A
    J Therm Biol; 2018 Feb; 72():81-93. PubMed ID: 29496019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.
    Hassanalian M; Abdelmoula H; Ben Ayed S; Abdelkefi A
    J Therm Biol; 2017 May; 66():27-32. PubMed ID: 28477907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross.
    Hassanalian M; Throneberry G; Ali M; Ben Ayed S; Abdelkefi A
    J Therm Biol; 2018 Jan; 71():112-122. PubMed ID: 29301679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquatic animal colors and skin temperature: Biology's selection for reducing oceanic dolphin's skin friction drag.
    Hassanalian M; Abdelmoula H; Mohammadi S; Bakhtiyarov S; Goerlich J; Javed U
    J Therm Biol; 2019 Aug; 84():292-310. PubMed ID: 31466767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot wings: thermal impacts of wing coloration on surface temperature during bird flight.
    Rogalla S; D'Alba L; Verdoodt A; Shawkey MD
    J R Soc Interface; 2019 Jul; 16(156):20190032. PubMed ID: 31337303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum hovering wing planform.
    Nabawy MR; Crowther WJ
    J Theor Biol; 2016 Oct; 406():187-91. PubMed ID: 27329340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feather roughness reduces flow separation during low Reynolds number glides of swifts.
    van Bokhorst E; de Kat R; Elsinga GE; Lentink D
    J Exp Biol; 2015 Oct; 218(Pt 20):3179-91. PubMed ID: 26347563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency.
    Rogalla S; Nicolaï MPJ; Porchetta S; Glabeke G; Battistella C; D'Alba L; Gianneschi NC; van Beeck J; Shawkey MD
    J R Soc Interface; 2021 Jul; 18(180):20210236. PubMed ID: 34229457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bio-inspired device for drag reduction on a three-dimensional model vehicle.
    Kim D; Lee H; Yi W; Choi H
    Bioinspir Biomim; 2016 Mar; 11(2):026004. PubMed ID: 26963693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New model of flap-gliding flight.
    Sachs G
    J Theor Biol; 2015 Jul; 377():110-6. PubMed ID: 25841702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multitrait aposematic signal in Batesian mimicry.
    Outomuro D; Ángel-Giraldo P; Corral-Lopez A; Realpe E
    Evolution; 2016 Jul; 70(7):1596-608. PubMed ID: 27241010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flapping wing aerodynamics: from insects to vertebrates.
    Chin DD; Lentink D
    J Exp Biol; 2016 Apr; 219(Pt 7):920-32. PubMed ID: 27030773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birds' tails do act like delta wings but delta-wing theory does not always predict the forces they generate.
    Evans MR
    Proc Biol Sci; 2003 Jul; 270(1522):1379-85. PubMed ID: 12965029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do birds' tails work? Delta-wing theory fails to predict tail shape during flight.
    Evans MR; Rosén M; Park KJ; Hedenström A
    Proc Biol Sci; 2002 May; 269(1495):1053-7. PubMed ID: 12028763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body mass and wing shape explain variability in broad-scale bird species distributions of migratory passerines along an ecological barrier during stopover.
    Buler JJ; Lyon RJ; Smolinsky JA; Zenzal TJ; Moore FR
    Oecologia; 2017 Oct; 185(2):205-212. PubMed ID: 28852874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bird or bat: comparing airframe design and flight performance.
    Hedenström A; Johansson LC; Spedding GR
    Bioinspir Biomim; 2009 Mar; 4(1):015001. PubMed ID: 19258691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.
    Chatterjee S; Templin RJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The concept of energy height in animal locomotion: separating mechanics from physiology.
    Pennycuick CJ
    J Theor Biol; 2003 Sep; 224(2):189-203. PubMed ID: 12927526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.