These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 29496379)
1. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability. Perotti MG; Bonino MF; Ferraro D; Cruz FB Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379 [TBL] [Abstract][Full Text] [Related]
2. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? Bonino MF; Cruz FB; Perotti MG J Therm Biol; 2020 Dec; 94():102744. PubMed ID: 33292985 [TBL] [Abstract][Full Text] [Related]
3. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms. Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567 [TBL] [Abstract][Full Text] [Related]
4. Early life exposure to high temperature enhances locomotor performance without alteration in thermal ecology in different populations of Thoropa taophora tadpoles (Anura, Cycloramphidae). Carvalho JE; Gallo AC; Brasileiro CA; Schaeffer PJ J Exp Biol; 2024 Aug; 227(16):. PubMed ID: 39054944 [TBL] [Abstract][Full Text] [Related]
5. Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog. Barria AM; Bacigalupe LD J Therm Biol; 2017 Oct; 69():254-260. PubMed ID: 29037391 [TBL] [Abstract][Full Text] [Related]
6. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. Kubisch EL; Fernández JB; Ibargüengoytía NR J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700 [TBL] [Abstract][Full Text] [Related]
7. Intra and interspecific variation in thermal performance and critical limits in anurans from southern Chile. Vidal MA; Rezende EL; Bacigalupe LD J Therm Biol; 2024 Apr; 121():103851. PubMed ID: 38615494 [TBL] [Abstract][Full Text] [Related]
8. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related]
9. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints. Sanabria EA; Quiroga LB; Martino AL J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):185-93. PubMed ID: 22311743 [TBL] [Abstract][Full Text] [Related]
10. Physiological responses of ectotherms to daily temperature variation. Kern P; Cramp RL; Franklin CE J Exp Biol; 2015 Oct; 218(Pt 19):3068-76. PubMed ID: 26254318 [TBL] [Abstract][Full Text] [Related]
11. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
12. BODY DISTRIBUTION OF HANNEMANIA SP. (ACARI: LEEUWENHOEKIIDAE) IN RHINELLA SPINULOSA, PLEURODEMA BUFONINA, AND PLEURODEMA THAUL FROM CHILE. Díaz-Páez H; Cortez E; de la Fuente CS; Moreno Salas L J Zoo Wildl Med; 2016 Jun; 47(2):594-600. PubMed ID: 27468033 [TBL] [Abstract][Full Text] [Related]
13. Niche width predicts extinction from climate change and vulnerability of tropical species. Grinder RM; Wiens JJ Glob Chang Biol; 2023 Feb; 29(3):618-630. PubMed ID: 36260367 [TBL] [Abstract][Full Text] [Related]
16. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Baldanzi S; Weidberg NF; Fusi M; Cannicci S; McQuaid CD; Porri F Oecologia; 2015 Dec; 179(4):1067-78. PubMed ID: 26232091 [TBL] [Abstract][Full Text] [Related]
17. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming. Delgado-Suazo P; Burrowes PA J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199 [TBL] [Abstract][Full Text] [Related]
18. The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Sheth SN; Angert AL Evolution; 2014 Oct; 68(10):2917-31. PubMed ID: 25066881 [TBL] [Abstract][Full Text] [Related]
19. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]