These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Niche evolution and thermal adaptation in the temperate species Drosophila americana. Sillero N; Reis M; Vieira CP; Vieira J; Morales-Hojas R J Evol Biol; 2014 Aug; 27(8):1549-61. PubMed ID: 24835376 [TBL] [Abstract][Full Text] [Related]
24. Ecological networks are more sensitive to plant than to animal extinction under climate change. Schleuning M; Fründ J; Schweiger O; Welk E; Albrecht J; Albrecht M; Beil M; Benadi G; Blüthgen N; Bruelheide H; Böhning-Gaese K; Dehling DM; Dormann CF; Exeler N; Farwig N; Harpke A; Hickler T; Kratochwil A; Kuhlmann M; Kühn I; Michez D; Mudri-Stojnić S; Plein M; Rasmont P; Schwabe A; Settele J; Vujić A; Weiner CN; Wiemers M; Hof C Nat Commun; 2016 Dec; 7():13965. PubMed ID: 28008919 [TBL] [Abstract][Full Text] [Related]
25. Modeling warming predicts a physiological threshold for the extinction of the living fossil frog Calyptocephalella gayi. Vidal MA; Novoa-Muñoz F; Werner E; Torres C; Nova R J Therm Biol; 2017 Oct; 69():110-117. PubMed ID: 29037370 [TBL] [Abstract][Full Text] [Related]
26. Linking physiology and climate to infer species distributions in Australian skinks. Anderson RO; Tingley R; Hoskin CJ; White CR; Chapple DG J Anim Ecol; 2023 Oct; 92(10):2094-2108. PubMed ID: 37661659 [TBL] [Abstract][Full Text] [Related]
27. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604 [TBL] [Abstract][Full Text] [Related]
28. Warm vegetarians? Heat waves and diet shifts in tadpoles. Carreira BM; Segurado P; Orizaola G; Gonçalves N; Pinto V; Laurila A; Rebelo R Ecology; 2016 Nov; 97(11):2964-2974. PubMed ID: 27870032 [TBL] [Abstract][Full Text] [Related]
29. Is thermal sensitivity affected by predation risk? A case study in tadpoles from ephemeral environments. Miloch D; Cecchetto NR; Lescano JN; Leynaud GC; Perotti MG J Exp Zool A Ecol Integr Physiol; 2024 May; 341(4):400-409. PubMed ID: 38356256 [TBL] [Abstract][Full Text] [Related]
30. The acute thermal respiratory response is unique among species in a guild of larval anuran amphibians-Implications for energy economy in a warmer future. Rowe CL; Crandall EA Sci Total Environ; 2018 Mar; 618():229-235. PubMed ID: 29128771 [TBL] [Abstract][Full Text] [Related]
31. Thermal and salinity effects on locomotor performance of Thoropa taophora tadpoles (Anura, Cycloramphidae). Gallo AC; Brasileiro CA; DE Barros FC; DE Carvalho JE Integr Zool; 2020 Jan; 15(1):40-54. PubMed ID: 31149773 [TBL] [Abstract][Full Text] [Related]
32. Source of environmental data and warming tolerance estimation in six species of North American larval anurans. Katzenberger M; Hammond J; Tejedo M; Relyea R J Therm Biol; 2018 Aug; 76():171-178. PubMed ID: 30143292 [TBL] [Abstract][Full Text] [Related]
33. Thermal biology and locomotor performance in Phymaturus calcogaster: are Patagonian lizards vulnerable to climate change? ObregÓn RL; Scolaro JA; IbargÜengoytÍa NR; Medina M Integr Zool; 2021 Jan; 16(1):53-66. PubMed ID: 32822078 [TBL] [Abstract][Full Text] [Related]
34. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
35. Changes in thermal sensitivity of Rhinella arenarum tadpoles (Anura: Bufonidae) exposed to sublethal concentrations of different pesticide fractions (Lorsban® 75WG). Gordillo L; Quiroga L; Ray M; Sanabria E J Therm Biol; 2024 Feb; 120():103816. PubMed ID: 38428105 [TBL] [Abstract][Full Text] [Related]
36. Integrating within-species variation in thermal physiology into climate change ecology. Bennett S; Duarte CM; Marbà N; Wernberg T Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180550. PubMed ID: 31203756 [TBL] [Abstract][Full Text] [Related]
37. Differential effects of temperature on the feeding kinematics of the tadpoles of two sympatric anuran species. de Sousa VT; Nomura F; de C Rossa-Feres D; Andrade GV; Pezzuti TL; Wassersug RJ; Venesky MD J Exp Zool A Ecol Genet Physiol; 2015 Aug; 323(7):456-65. PubMed ID: 26055073 [TBL] [Abstract][Full Text] [Related]
38. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. Agudelo-Cantero GA; Navas CA J Therm Biol; 2019 May; 82():43-51. PubMed ID: 31128658 [TBL] [Abstract][Full Text] [Related]
39. Temperature and UV-B-insensitive performance in tadpoles of the ornate burrowing frog: an ephemeral pond specialist. Kern P; Cramp RL; Franklin CE J Exp Biol; 2014 Apr; 217(Pt 8):1246-52. PubMed ID: 24363412 [TBL] [Abstract][Full Text] [Related]
40. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. González-Del-Pliego P; Scheffers BR; Freckleton RP; Basham EW; Araújo MB; Acosta-Galvis AR; Medina Uribe CA; Haugaasen T; Edwards DP J Anim Ecol; 2020 Nov; 89(11):2451-2460. PubMed ID: 32745275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]