BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29496400)

  • 1. Nanoparticles synthesis by Agaricus soil basidiomycetes.
    Loshchinina EA; Vetchinkina EP; Kupryashina MA; Kursky VF; Nikitina VE
    J Biosci Bioeng; 2018 Jul; 126(1):44-52. PubMed ID: 29496400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.
    Jurak E; Punt AM; Arts W; Kabel MA; Gruppen H
    PLoS One; 2015; 10(10):e0138909. PubMed ID: 26436656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus.
    Cardoso RVC; Fernandes Â; Oliveira MBPP; Calhelha RC; Barros L; Martins A; Ferreira ICFR
    Food Funct; 2017 Jun; 8(6):2155-2164. PubMed ID: 28534588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.
    Krakowska A; Reczyński W; Muszyńska B
    Biol Trace Elem Res; 2016 Sep; 173(1):231-40. PubMed ID: 26857993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agaricus bisporus and related Agaricus species on lignocellulose: production of manganese peroxidase and multicopper oxidases.
    Hildén K; Mäkelä MR; Lankinen P; Lundell T
    Fungal Genet Biol; 2013 Jun; 55():32-41. PubMed ID: 23454218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The development of Agaricus bisporus wet bubble disease and the nuclear phase of pathogen].
    Zhang C; Xu J; Kakishima M; Li Y
    Wei Sheng Wu Xue Bao; 2017 Mar; 57(3):422-33. PubMed ID: 29756440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes.
    Vetchinkina E; Loshchinina E; Kupryashina M; Burov A; Pylaev T; Nikitina V
    PeerJ; 2018; 6():e5237. PubMed ID: 30042892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus.
    Krupke OA; Castle AJ; Rinker DL
    Mycol Res; 2003 Dec; 107(Pt 12):1467-75. PubMed ID: 15000247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles.
    Singh RK; Zhang YW; Nguyen NP; Jeya M; Lee JK
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):337-44. PubMed ID: 20811797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-component signal transduction in Agaricus bisporus: a comparative genomic analysis with other basidiomycetes through the web-based tool BASID2CS.
    Lavín JL; García-Yoldi A; Ramírez L; Pisabarro AG; Oguiza JA
    Fungal Genet Biol; 2013 Jun; 55():77-84. PubMed ID: 23123423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of spent mushroom compost tea on mycelial growth and yield of button mushroom (Agaricus bisporus).
    Gea FJ; Santos M; Diánez F; Tello JC; Navarro MJ
    World J Microbiol Biotechnol; 2012 Aug; 28(8):2765-9. PubMed ID: 22806203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Morphogenesis and ultrastructure of basidiomycetes Agaricus and Pleurotus mitochondria].
    Matrosova EV; Mazheĭka IS; Kudriavtseva OA; Kamzolkina OV
    Tsitologiia; 2009; 51(6):490-9. PubMed ID: 19637752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver uptake by Agaricus bisporus from an artificially enriched substrate.
    Falandysz J; Bona H; Danisiewicz D
    Z Lebensm Unters Forsch; 1994 Sep; 199(3):225-8. PubMed ID: 7975912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycelium and polysaccharide production of Agaricus blazei Murrill by submerged fermentation.
    Lin JH; Yang SS
    J Microbiol Immunol Infect; 2006 Apr; 39(2):98-108. PubMed ID: 16604241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth.
    Mantovani TR; Linde GA; Colauto NB
    Can J Microbiol; 2007 Jan; 53(1):139-43. PubMed ID: 17496959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nanocomposite-based packaging on microstructure and energy metabolism of Agaricus bisporus.
    Wu Y; Hu Q; Li Z; Pei F; Mugambi Mariga A; Yang W
    Food Chem; 2019 Mar; 276():790-796. PubMed ID: 30409664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downregulation of Ethylene Production Increases Mycelial Growth and Primordia Formation in the Button Culinary-Medicinal Mushroom, Agaricus bisporus (Agaricomycetes).
    Zhang C; Huang T; Shen C; Wang X; Qi Y; Shen J; Song A; Qiu L; Ai Y
    Int J Med Mushrooms; 2016; 18(12):1131-1140. PubMed ID: 28094751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost.
    Williams J; Clarkson JM; Mills PR; Cooper RM
    Appl Environ Microbiol; 2003 Jul; 69(7):4190-1. PubMed ID: 12839798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and metabolic changes in an aged strain of Agaricus bisporus As2796.
    Shu L; Zeng Z; Dai J; Cheng Y; Lu Y; Chen M; Zeng H
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7997-8007. PubMed ID: 34596723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verticillium disease or "dry bubble" of cultivated mushrooms: the Agaricus bisporus lectin recognizes and binds the Verticillium fungicola cell wall glucogalactomannan.
    Bernardo D; Cabo AP; Novaes-Ledieu M; Mendoza CG
    Can J Microbiol; 2004 Sep; 50(9):729-35. PubMed ID: 15644927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.