BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 29496663)

  • 1. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development.
    de Bock CE; Demeyer S; Degryse S; Verbeke D; Sweron B; Gielen O; Vandepoel R; Vicente C; Vanden Bempt M; Dagklis A; Geerdens E; Bornschein S; Gijsbers R; Soulier J; Meijerink JP; Heinäniemi M; Teppo S; Bouvy-Liivrand M; Lohi O; Radaelli E; Cools J
    Cancer Discov; 2018 May; 8(5):616-631. PubMed ID: 29496663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression.
    Yuan S; Wang X; Hou S; Guo T; Lan Y; Yang S; Zhao F; Gao J; Wang Y; Chu Y; Shi J; Cheng T; Yuan W
    Leukemia; 2022 Feb; 36(2):370-382. PubMed ID: 34465864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.
    Girardi T; Vereecke S; Sulima SO; Khan Y; Fancello L; Briggs JW; Schwab C; de Beeck JO; Verbeeck J; Royaert J; Geerdens E; Vicente C; Bornschein S; Harrison CJ; Meijerink JP; Cools J; Dinman JD; Kampen KR; De Keersmaecker K
    Leukemia; 2018 Mar; 32(3):809-819. PubMed ID: 28744013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia.
    Maude SL; Dolai S; Delgado-Martin C; Vincent T; Robbins A; Selvanathan A; Ryan T; Hall J; Wood AC; Tasian SK; Hunger SP; Loh ML; Mullighan CG; Wood BL; Hermiston ML; Grupp SA; Lock RB; Teachey DT
    Blood; 2015 Mar; 125(11):1759-67. PubMed ID: 25645356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The JAK3
    Lahera A; Vela-Martín L; Fernández-Navarro P; Llamas P; López-Lorenzo JL; Cornago J; Santos J; Fernández-Piqueras J; Villa-Morales M
    Mol Carcinog; 2024 Jan; 63(1):5-10. PubMed ID: 37712558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK kinases overexpression promotes in vitro cell transformation.
    Knoops L; Hornakova T; Royer Y; Constantinescu SN; Renauld JC
    Oncogene; 2008 Mar; 27(11):1511-9. PubMed ID: 17873904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK3 mutations and HOXA9 expression are important cooperating events in T-cell acute lymphoblastic leukemia.
    de Bock CE; Cools J
    Mol Cell Oncol; 2018; 5(3):e1458014. PubMed ID: 30250904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.
    Degryse S; Bornschein S; de Bock CE; Leroy E; Vanden Bempt M; Demeyer S; Jacobs K; Geerdens E; Gielen O; Soulier J; Harrison CJ; Constantinescu SN; Cools J
    Blood; 2018 Jan; 131(4):421-425. PubMed ID: 29187379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia.
    Sharma ND; Nickl CK; Kang H; Ornatowski W; Brown R; Ness SA; Loh ML; Mullighan CG; Winter SS; Hunger SP; Cannon JL; Matlawska-Wasowska K
    Cancer Sci; 2019 Jun; 110(6):1931-1946. PubMed ID: 30974024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining for JAK-STAT mutations in cancer.
    Constantinescu SN; Girardot M; Pecquet C
    Trends Biochem Sci; 2008 Mar; 33(3):122-31. PubMed ID: 18291658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional deregulation of oncogenic myocyte enhancer factor 2C in T-cell acute lymphoblastic leukemia.
    Nagel S; Venturini L; Meyer C; Kaufmann M; Scherr M; Drexler HG; Macleod RA
    Leuk Lymphoma; 2011 Feb; 52(2):290-7. PubMed ID: 21261500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma.
    Nairismägi ML; Tan J; Lim JQ; Nagarajan S; Ng CC; Rajasegaran V; Huang D; Lim WK; Laurensia Y; Wijaya GC; Li ZM; Cutcutache I; Pang WL; Thangaraju S; Ha J; Khoo LP; Chin ST; Dey S; Poore G; Tan LH; Koh HK; Sabai K; Rao HL; Chuah KL; Ho YH; Ng SB; Chuang SS; Zhang F; Liu YH; Pongpruttipan T; Ko YH; Cheah PL; Karim N; Chng WJ; Tang T; Tao M; Tay K; Farid M; Quek R; Rozen SG; Tan P; Teh BT; Lim ST; Tan SY; Ong CK
    Leukemia; 2016 Jun; 30(6):1311-9. PubMed ID: 26854024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers.
    Hornakova T; Staerk J; Royer Y; Flex E; Tartaglia M; Constantinescu SN; Knoops L; Renauld JC
    J Biol Chem; 2009 Mar; 284(11):6773-81. PubMed ID: 19139102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL7R overexpression in adult acute lymphoblastic leukemia is associated to JAK/STAT pathway mutations and identifies patients who could benefit from targeted therapies.
    Gianfelici V; Messina M; Paoloni F; Peragine N; Lauretti A; Fedullo AL; Di Giacomo F; Vignetti M; Vitale A; Guarini A; Chiaretti S; Foà R
    Leuk Lymphoma; 2019 Mar; 60(3):829-832. PubMed ID: 30188230
    [No Abstract]   [Full Text] [Related]  

  • 16. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.
    Gianfelici V; Chiaretti S; Demeyer S; Di Giacomo F; Messina M; La Starza R; Peragine N; Paoloni F; Geerdens E; Pierini V; Elia L; Mancini M; De Propris MS; Apicella V; Gaidano G; Testi AM; Vitale A; Vignetti M; Mecucci C; Guarini A; Cools J; Foà R
    Haematologica; 2016 Aug; 101(8):941-50. PubMed ID: 27151993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic leukemia.
    Duque-Afonso J; Feng J; Scherer F; Lin CH; Wong SH; Wang Z; Iwasaki M; Cleary ML
    J Clin Invest; 2015 Sep; 125(9):3667-80. PubMed ID: 26301816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl.
    Carlesso N; Frank DA; Griffin JD
    J Exp Med; 1996 Mar; 183(3):811-20. PubMed ID: 8642285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.
    Pike KA; Tremblay ML
    Cytokine; 2016 Jun; 82():52-7. PubMed ID: 26817397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia.
    Broux M; Prieto C; Demeyer S; Vanden Bempt M; Alberti-Servera L; Lodewijckx I; Vandepoel R; Mentens N; Gielen O; Jacobs K; Geerdens E; Vicente C; de Bock CE; Cools J
    Blood; 2019 Oct; 134(16):1323-1336. PubMed ID: 31492675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.