These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29497132)

  • 1. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.
    Raju M; van Duin A; Ihme M
    Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2016 Aug; 145(5):054704. PubMed ID: 27497569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2015 Mar; 17(11):7303-16. PubMed ID: 25698066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of ordered ice nanotubes inside carbon nanotubes.
    Koga K; Gao GT; Tanaka H; Zeng XC
    Nature; 2001 Aug; 412(6849):802-5. PubMed ID: 11518961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superheating of monolayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Apr; 146(13):134703. PubMed ID: 28390346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-field-induced phase transition of confined water nanofilms between two graphene sheets.
    Qian Z; Wei G
    J Phys Chem A; 2014 Oct; 118(39):8922-8. PubMed ID: 24831927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AB-stacked square-like bilayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    Phys Chem Chem Phys; 2016 Aug; 18(32):22039-46. PubMed ID: 27468430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    ACS Nano; 2015 Dec; 9(12):12197-204. PubMed ID: 26575824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into Water Permeation through hBN Nanocapillaries by Ab Initio Machine Learning Molecular Dynamics Simulations.
    Ghorbanfekr H; Behler J; Peeters FM
    J Phys Chem Lett; 2020 Sep; 11(17):7363-7370. PubMed ID: 32787306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel ice structures in carbon nanopores: pressure enhancement effect of confinement.
    Jazdzewska M; Sliwinska-Bartkowiak MM; Beskrovnyy AI; Vasilovskiy SG; Ting SW; Chan KY; Huang L; Gubbins KE
    Phys Chem Chem Phys; 2011 May; 13(19):9008-13. PubMed ID: 21451863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-Induced Melting of Confined Ice.
    Sotthewes K; Bampoulis P; Zandvliet HJW; Lohse D; Poelsema B
    ACS Nano; 2017 Dec; 11(12):12723-12731. PubMed ID: 29112376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a two-dimensional helical square tube ice in hydrophobic nanoslit using the TIP5P water model.
    Li J; Zhu C; Zhao W; Gao Y; Bai J; Jiang J; Zeng XC
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38661200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube.
    Nomura K; Kaneko T; Bai J; Francisco JS; Yasuoka K; Zeng XC
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4066-4071. PubMed ID: 28373562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase behaviors of deeply supercooled bilayer water unseen in bulk water.
    Kaneko T; Bai J; Akimoto T; Francisco JS; Yasuoka K; Zeng XC
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4839-4844. PubMed ID: 29691325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water.
    Yun Y; Khaliullin RZ; Jung Y
    J Phys Chem Lett; 2019 Apr; 10(8):2008-2016. PubMed ID: 30946585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.