These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 29497172)
1. Impaired Na Xiao J; Zhang X; Fu C; Yang Q; Xie Y; Zhang Z; Ye Z Exp Mol Med; 2018 Mar; 50(3):e452. PubMed ID: 29497172 [TBL] [Abstract][Full Text] [Related]
2. AMPK alleviates high uric acid-induced Na Xiao J; Zhu S; Guan H; Zheng Y; Li F; Zhang X; Guo H; Wang X; Ye Z Exp Mol Med; 2019 May; 51(5):1-14. PubMed ID: 31118410 [TBL] [Abstract][Full Text] [Related]
3. Autophagy-dependent Na Guan H; Lin H; Wang X; Xu Y; Zheng Y; Zhou X; Diao X; Ye Z; Xiao J Eur J Pharmacol; 2022 Oct; 932():175237. PubMed ID: 36063871 [TBL] [Abstract][Full Text] [Related]
4. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Kim SM; Lee SH; Kim YG; Kim SY; Seo JW; Choi YW; Kim DJ; Jeong KH; Lee TW; Ihm CG; Won KY; Moon JY Am J Physiol Renal Physiol; 2015 May; 308(9):F993-F1003. PubMed ID: 25651569 [TBL] [Abstract][Full Text] [Related]
5. Uric acid upregulates the adiponectin‑adiponectin receptor 1 pathway in renal proximal tubule epithelial cells. Yang Q; Fu C; Xiao J; Ye Z Mol Med Rep; 2018 Mar; 17(3):3545-3554. PubMed ID: 29359786 [TBL] [Abstract][Full Text] [Related]
6. Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption. Cui D; Liu S; Tang M; Lu Y; Zhao M; Mao R; Wang C; Yuan Y; Li L; Chen Y; Cheng J; Lu Y; Liu J Phytomedicine; 2020 Jan; 66():153111. PubMed ID: 31790902 [TBL] [Abstract][Full Text] [Related]
7. Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. Liu J; Yan Y; Liu L; Xie Z; Malhotra D; Joe B; Shapiro JI J Biol Chem; 2011 Jul; 286(26):22806-13. PubMed ID: 21555512 [TBL] [Abstract][Full Text] [Related]
8. Low dose ouabain stimulates NaK ATPase α1 subunit association with angiotensin II type 1 receptor in renal proximal tubule cells. Ketchem CJ; Conner CD; Murray RD; DuPlessis M; Lederer ED; Wilkey D; Merchant M; Khundmiri SJ Biochim Biophys Acta; 2016 Nov; 1863(11):2624-2636. PubMed ID: 27496272 [TBL] [Abstract][Full Text] [Related]
9. Loss of NHERF-1 expression prevents dopamine-mediated Na-K-ATPase regulation in renal proximal tubule cells from rat models of hypertension: aged F344 rats and spontaneously hypertensive rats. Barati MT; Ketchem CJ; Merchant ML; Kusiak WB; Jose PA; Weinman EJ; LeBlanc AJ; Lederer ED; Khundmiri SJ Am J Physiol Cell Physiol; 2017 Aug; 313(2):C197-C206. PubMed ID: 28515088 [TBL] [Abstract][Full Text] [Related]
10. Sex differences in the alterations of Na(+), K(+)-ATPase following ischaemia-reperfusion injury in the rat kidney. Fekete A; Vannay A; Vér A; Vásárhelyi B; Müller V; Ouyang N; Reusz G; Tulassay T; Szabó AJ J Physiol; 2004 Mar; 555(Pt 2):471-80. PubMed ID: 14673189 [TBL] [Abstract][Full Text] [Related]
11. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Wang MX; Liu YL; Yang Y; Zhang DM; Kong LD Eur J Pharmacol; 2015 Jan; 747():59-70. PubMed ID: 25499818 [TBL] [Abstract][Full Text] [Related]
12. Effects of cardiotonic steroids on isolated perfused kidney and NHE3 activity in renal proximal tubules. Godinho AN; Costa GT; Oliveira NO; Cardi BA; Uchoa DEA; Silveira ER; Quintas LEM; Noël FG; Fonteles MC; Carvalho KM; Santos CF; Lessa LMA; do Nascimento NRF Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1943-1950. PubMed ID: 28506883 [TBL] [Abstract][Full Text] [Related]
13. Loss of biphasic effect on Na/K-ATPase activity by angiotensin II involves defective angiotensin type 1 receptor-nitric oxide signaling. Banday AA; Lokhandwala MF Hypertension; 2008 Dec; 52(6):1099-105. PubMed ID: 18955661 [TBL] [Abstract][Full Text] [Related]
14. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Xiao J; Zhang XL; Fu C; Han R; Chen W; Lu Y; Ye Z Int J Mol Med; 2015 May; 35(5):1347-54. PubMed ID: 25813103 [TBL] [Abstract][Full Text] [Related]
15. Calcium supplementation and thyroid hormone protect against gentamicin-induced inhibition of proximal tubular Na+,K(+)-ATPase activity and other renal functional changes. Fukuda Y; Eklöf AC; Malmborg AS; Aperia A Acta Physiol Scand; 1992 Jun; 145(2):93-8. PubMed ID: 1322021 [TBL] [Abstract][Full Text] [Related]
16. Hyperuricemia induces hypertension through activation of renal epithelial sodium channel (ENaC). Xu W; Huang Y; Li L; Sun Z; Shen Y; Xing J; Li M; Su D; Liang X Metabolism; 2016 Mar; 65(3):73-83. PubMed ID: 26892518 [TBL] [Abstract][Full Text] [Related]
17. Role of tyrosine kinase and p44/42 MAPK in D(2)-like receptor-mediated stimulation of Na(+), K(+)-ATPase in kidney. Narkar V; Hussain T; Lokhandwala M Am J Physiol Renal Physiol; 2002 Apr; 282(4):F697-702. PubMed ID: 11880331 [TBL] [Abstract][Full Text] [Related]
18. Increased renal metabolism in diabetes. Mechanism and functional implications. Körner A; Eklöf AC; Celsi G; Aperia A Diabetes; 1994 May; 43(5):629-33. PubMed ID: 8168637 [TBL] [Abstract][Full Text] [Related]
19. Uric acid increases fibronectin synthesis through upregulation of lysyl oxidase expression in rat renal tubular epithelial cells. Yang Z; Xiaohua W; Lei J; Ruoyun T; Mingxia X; Weichun H; Li F; Ping W; Junwei Y Am J Physiol Renal Physiol; 2010 Aug; 299(2):F336-46. PubMed ID: 20484295 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway. Hakam AC; Hussain T Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1430-6. PubMed ID: 16380464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]