These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 29497360)
1. Effects of Distracting Task with Different Mental Workload on Steady-State Visual Evoked Potential Based Brain Computer Interfaces-an Offline Study. Zhao Y; Tang J; Cao Y; Jiao X; Xu M; Zhou P; Ming D; Qi H Front Neurosci; 2018; 12():79. PubMed ID: 29497360 [TBL] [Abstract][Full Text] [Related]
2. Exploration of User's Mental State Changes during Performing Brain-Computer Interface. Ko LW; Chikara RK; Lee YC; Lin WC Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162 [TBL] [Abstract][Full Text] [Related]
3. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C; Allison BZ; Altstätter C; Neuper C J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538 [TBL] [Abstract][Full Text] [Related]
4. Effects of Background Music on Mental Fatigue in Steady-State Visually Evoked Potential-Based BCIs. Gao S; Zhou K; Zhang J; Cheng Y; Mao S Healthcare (Basel); 2023 Apr; 11(7):. PubMed ID: 37046941 [TBL] [Abstract][Full Text] [Related]
5. Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations. İşcan Z; Nikulin VV PLoS One; 2018; 13(1):e0191673. PubMed ID: 29360843 [TBL] [Abstract][Full Text] [Related]
6. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter. Zhang D; Huang B; Wu W; Li S Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229 [TBL] [Abstract][Full Text] [Related]
7. Training and testing ERP-BCIs under different mental workload conditions. Ke Y; Wang P; Chen Y; Gu B; Qi H; Zhou P; Ming D J Neural Eng; 2016 Feb; 13(1):016007. PubMed ID: 26655346 [TBL] [Abstract][Full Text] [Related]
8. Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces. Kwon J; Hwang J; Nam H; Im CH Front Neuroinform; 2022; 16():997068. PubMed ID: 36213545 [TBL] [Abstract][Full Text] [Related]
9. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks. Ai J; Meng J; Mai X; Zhu X IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132 [TBL] [Abstract][Full Text] [Related]
11. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
12. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related]
13. Alpha neurofeedback training improves SSVEP-based BCI performance. Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666 [TBL] [Abstract][Full Text] [Related]
14. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface. Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731 [TBL] [Abstract][Full Text] [Related]
15. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI). Lim JH; Hwang HJ; Han CH; Jung KY; Im CH J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484 [TBL] [Abstract][Full Text] [Related]
16. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential. Brumberg JS; Nguyen A; Pitt KM; Lorenz SD Disabil Rehabil Assist Technol; 2019 Apr; 14(3):241-249. PubMed ID: 29385839 [TBL] [Abstract][Full Text] [Related]
17. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor. Chen X; Wang Y; Zhang S; Xu S; Gao X J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820 [TBL] [Abstract][Full Text] [Related]
18. A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome. Combaz A; Chatelle C; Robben A; Vanhoof G; Goeleven A; Thijs V; Van Hulle MM; Laureys S PLoS One; 2013; 8(9):e73691. PubMed ID: 24086289 [TBL] [Abstract][Full Text] [Related]
19. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface. Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270 [TBL] [Abstract][Full Text] [Related]
20. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]