BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29497364)

  • 1. Vulnerable Parkin Loss-of-Function
    Cackovic J; Gutierrez-Luke S; Call GB; Juba A; O'Brien S; Jun CH; Buhlman LM
    Front Cell Neurosci; 2018; 12():39. PubMed ID: 29497364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 3. Nicotine increases lifespan and rescues olfactory and motor deficits in a Drosophila model of Parkinson's disease.
    Chambers RP; Call GB; Meyer D; Smith J; Techau JA; Pearman K; Buhlman LM
    Behav Brain Res; 2013 Sep; 253():95-102. PubMed ID: 23871228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging mitophagy in the fruit fly.
    Cornelissen T; Verstreken P; Vandenberghe W
    Autophagy; 2018; 14(9):1656-1657. PubMed ID: 29995555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice.
    Noda S; Sato S; Fukuda T; Tada N; Uchiyama Y; Tanaka K; Hattori N
    Neurobiol Dis; 2020 Mar; 136():104717. PubMed ID: 31846738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.
    Sung H; Tandarich LC; Nguyen K; Hollenbeck PJ
    J Neurosci; 2016 Jul; 36(28):7375-91. PubMed ID: 27413149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.
    Zanon A; Kalvakuri S; Rakovic A; Foco L; Guida M; Schwienbacher C; Serafin A; Rudolph F; Trilck M; Grünewald A; Stanslowsky N; Wegner F; Giorgio V; Lavdas AA; Bodmer R; Pramstaller PP; Klein C; Hicks AA; Pichler I; Seibler P
    Hum Mol Genet; 2017 Jul; 26(13):2412-2425. PubMed ID: 28379402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants.
    Greene JC; Whitworth AJ; Kuo I; Andrews LA; Feany MB; Pallanck LJ
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4078-83. PubMed ID: 12642658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic Acid Improves Parkin-Null
    Houlihan KL; Keoseyan PP; Juba AN; Margaryan T; Voss ME; Babaoghli AM; Norris JM; Adrian GJ; Tovmasyan A; Buhlman LM
    Antioxidants (Basel); 2022 Oct; 11(10):. PubMed ID: 36290790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy.
    Van Laar VS; Roy N; Liu A; Rajprohat S; Arnold B; Dukes AA; Holbein CD; Berman SB
    Neurobiol Dis; 2015 Feb; 74():180-93. PubMed ID: 25478815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of parkin and PINK1 impairs age-dependent mitophagy in
    Cornelissen T; Vilain S; Vints K; Gounko N; Verstreken P; Vandenberghe W
    Elife; 2018 May; 7():. PubMed ID: 29809156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparan Sulfate Structure Affects Autophagy, Lifespan, Responses to Oxidative Stress, and Cell Degeneration in
    Reynolds-Peterson C; Xu J; Zhao N; Cruse C; Yonel B; Trasorras C; Toyoda H; Kinoshita-Toyoda A; Dobson J; Schultheis N; Jiang M; Selleck S
    G3 (Bethesda); 2020 Jan; 10(1):129-141. PubMed ID: 31672849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parkin- and PINK1-Dependent Mitophagy in Neurons: Will the Real Pathway Please Stand Up?
    Grenier K; McLelland GL; Fon EA
    Front Neurol; 2013; 4():100. PubMed ID: 23882257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mask loss-of-function rescues mitochondrial impairment and muscle degeneration of Drosophila pink1 and parkin mutants.
    Zhu M; Li X; Tian X; Wu C
    Hum Mol Genet; 2015 Jun; 24(11):3272-85. PubMed ID: 25743185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salidroside Protects Dopaminergic Neurons by Enhancing PINK1/Parkin-Mediated Mitophagy.
    Li R; Chen J
    Oxid Med Cell Longev; 2019; 2019():9341018. PubMed ID: 31583052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction in Parkinson's disease.
    Hu Q; Wang G
    Transl Neurodegener; 2016; 5():14. PubMed ID: 27453777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AF-6 Protects Against Dopaminergic Dysfunction and Mitochondrial Abnormalities in
    Basil AH; Sim JPL; Lim GGY; Lin S; Chan HY; Engelender S; Lim KL
    Front Cell Neurosci; 2017; 11():241. PubMed ID: 28848400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.