BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 29497370)

  • 1. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Motor Imagery-Based Brain-Computer Interface Performance Based on Sensory Stimulation Training: An Approach Focused on Poorly Performing Users.
    Park S; Ha J; Kim DH; Kim L
    Front Neurosci; 2021; 15():732545. PubMed ID: 34803582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can a Subjective Questionnaire Be Used as Brain-Computer Interface Performance Predictor?
    Rimbert S; Gayraud N; Bougrain L; Clerc M; Fleck S
    Front Hum Neurosci; 2018; 12():529. PubMed ID: 30728772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of motor imagery based brain computer interface performance using a reaction time test.
    Darvishi S; Abbott D; Baumert M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2880-3. PubMed ID: 26736893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Connectivity Analysis in Motor-Imagery Brain Computer Interfaces.
    Leeuwis N; Yoon S; Alimardani M
    Front Hum Neurosci; 2021; 15():732946. PubMed ID: 34720907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training.
    Abu-Rmileh A; Zakkay E; Shmuelof L; Shriki O
    Front Hum Neurosci; 2019; 13():362. PubMed ID: 31680914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continual Learning of a Transformer-Based Deep Learning Classifier Using an Initial Model from Action Observation EEG Data to Online Motor Imagery Classification.
    Lee PL; Chen SH; Chang TC; Lee WK; Hsu HT; Chang HH
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.
    Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P
    Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces.
    Leeuwis N; Paas A; Alimardani M
    Front Hum Neurosci; 2021; 15():634748. PubMed ID: 33889080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance.
    Bamdadian A; Guan C; Ang KK; Xu J
    J Neurosci Methods; 2014 Sep; 235():138-44. PubMed ID: 24979726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery.
    Vuckovic A; Osuagwu BA
    Clin Neurophysiol; 2013 Aug; 124(8):1586-95. PubMed ID: 23535455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient resting-state EEG network facilitates motor imagery performance.
    Zhang R; Yao D; Valdés-Sosa PA; Li F; Li P; Zhang T; Ma T; Li Y; Xu P
    J Neural Eng; 2015 Dec; 12(6):066024. PubMed ID: 26529439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling.
    Lee M; Yoon JG; Lee SW
    Front Hum Neurosci; 2020; 14():321. PubMed ID: 32903663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CluSem: Accurate clustering-based ensemble method to predict motor imagery tasks from multi-channel EEG data.
    Miah MO; Muhammod R; Mamun KAA; Farid DM; Kumar S; Sharma A; Dehzangi A
    J Neurosci Methods; 2021 Dec; 364():109373. PubMed ID: 34606773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-quality training data detection method of EEG signals for motor imagery BCI system.
    Ouyang R; Jin Z; Tang S; Fan C; Wu X
    J Neurosci Methods; 2022 Jul; 376():109607. PubMed ID: 35483505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid brain-computer interface with motor imagery and error-related brain activity.
    Mousavi M; Krol LR; de Sa VR
    J Neural Eng; 2020 Oct; 17(5):056041. PubMed ID: 32726757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.