BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29497432)

  • 1. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation.
    Ng JLP; Mathesius U
    Front Plant Sci; 2018; 9():169. PubMed ID: 29497432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules.
    Kohlen W; Ng JLP; Deinum EE; Mathesius U
    J Exp Bot; 2018 Jan; 69(2):229-244. PubMed ID: 28992078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux.
    Deinum EE; Kohlen W; Geurts R
    BMC Plant Biol; 2016 Nov; 16(1):254. PubMed ID: 27846795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean.
    Turner M; Nizampatnam NR; Baron M; Coppin S; Damodaran S; Adhikari S; Arunachalam SP; Yu O; Subramanian S
    Plant Physiol; 2013 Aug; 162(4):2042-55. PubMed ID: 23796794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of auxin distribution in root nodule development of Lotus japonicus.
    Takanashi K; Sugiyama A; Yazaki K
    Planta; 2011 Jul; 234(1):73-81. PubMed ID: 21369920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin distribution in Lotus japonicus during root nodule development.
    Pacios-Bras C; Schlaman HR; Boot K; Admiraal P; Langerak JM; Stougaard J; Spaink HP
    Plant Mol Biol; 2003 Aug; 52(6):1169-80. PubMed ID: 14682616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin distribution and lenticel formation in determinate nodule of Lotus japonicus.
    Takanashi K; Sugiyama A; Yazaki K
    Plant Signal Behav; 2011 Sep; 6(9):1405-7. PubMed ID: 22019641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation.
    Ng JLP; Welvaert A; Wen J; Chen R; Mathesius U
    J Exp Bot; 2020 Feb; 71(4):1562-1573. PubMed ID: 31738415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate map of Medicago truncatula root nodules.
    Xiao TT; Schilderink S; Moling S; Deinum EE; Kondorosi E; Franssen H; Kulikova O; Niebel A; Bisseling T
    Development; 2014 Sep; 141(18):3517-28. PubMed ID: 25183870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling.
    Shrestha A; Zhong S; Therrien J; Huebert T; Sato S; Mun T; Andersen SU; Stougaard J; Lepage A; Niebel A; Ross L; Szczyglowski K
    New Phytol; 2021 Feb; 229(3):1535-1552. PubMed ID: 32978812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin and nitric oxide control indeterminate nodule formation.
    Pii Y; Crimi M; Cremonese G; Spena A; Pandolfini T
    BMC Plant Biol; 2007 May; 7():21. PubMed ID: 17488509
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Magne K; Couzigou JM; Schiessl K; Liu S; George J; Zhukov V; Sahl L; Boyer F; Iantcheva A; Mysore KS; Wen J; Citerne S; Oldroyd GED; Ratet P
    Plant Physiol; 2018 Sep; 178(1):295-316. PubMed ID: 30026291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubulin Cytoskeleton Organization in Cells of Determinate Nodules.
    Kitaeva AB; Gorshkov AP; Kusakin PG; Sadovskaya AR; Tsyganova AV; Tsyganov VE
    Front Plant Sci; 2022; 13():823183. PubMed ID: 35557719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR393 and miR164 influence indeterminate but not determinate nodule development.
    Mao G; Turner M; Yu O; Subramanian S
    Plant Signal Behav; 2013 Oct; 8(10):doi: 10.4161/psb.26753. PubMed ID: 24494229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors.
    Rightmyer AP; Long SR
    Mol Plant Microbe Interact; 2011 Nov; 24(11):1372-84. PubMed ID: 21809981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizobial infection is associated with the development of peripheral vasculature in nodules of Medicago truncatula.
    Guan D; Stacey N; Liu C; Wen J; Mysore KS; Torres-Jerez I; Vernié T; Tadege M; Zhou C; Wang ZY; Udvardi MK; Oldroyd GE; Murray JD
    Plant Physiol; 2013 May; 162(1):107-15. PubMed ID: 23535942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear DNA endoreduplication and expression of the mitotic inhibitor Ccs52 associated to determinate and lupinoid nodule organogenesis.
    González-Sama A; de la Peña TC; Kevei Z; Mergaert P; Lucas MM; de Felipe MR; Kondorosi E; Pueyo JJ
    Mol Plant Microbe Interact; 2006 Feb; 19(2):173-80. PubMed ID: 16529379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia.
    Wasson AP; Pellerone FI; Mathesius U
    Plant Cell; 2006 Jul; 18(7):1617-29. PubMed ID: 16751348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GmPIN-dependent polar auxin transport is involved in soybean nodule development.
    Gao Z; Chen Z; Cui Y; Ke M; Xu H; Xu Q; Chen J; Li Y; Huang L; Zhao H; Huang D; Mai S; Xu T; Liu X; Li S; Guan Y; Yang W; Friml J; Petrášek J; Zhang J; Chen X
    Plant Cell; 2021 Sep; 33(9):2981-3003. PubMed ID: 34240197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.