BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2949752)

  • 1. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1987 Jan; 36(2):211-7. PubMed ID: 2949752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate.
    Dykens JA; Sullivan SG; Stern A
    Biochem Pharmacol; 1989 May; 38(10):1555-62. PubMed ID: 2525040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Manthey MK; Pyne SG; Truscott RJ
    Biochim Biophys Acta; 1990 May; 1034(2):207-12. PubMed ID: 2162210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide dismutases enhance the rate of autoxidation of 3-hydroxyanthranilic acid.
    Ishii T; Iwahashi H; Sugata R; Kido R; Fridovich I
    Arch Biochem Biophys; 1990 Jan; 276(1):248-50. PubMed ID: 2404453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Biochem J; 1988 May; 251(3):893-9. PubMed ID: 2843167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of oxy- and methemoglobin with tryptophan metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine.
    Tomoda A; Shirasawa E; Yoneyama Y
    Hemoglobin; 1986; 10(1):33-48. PubMed ID: 3957689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cinnabarinate formation in malpighian tubules of the silkworm. Bombyx mori: reaction mechanism of cinnabarinate formation in the presence of catalase and manganese ions.
    Ogawa H; Nagamura Y; Ishiguro I
    Hoppe Seylers Z Physiol Chem; 1983 Nov; 364(11):1507-18. PubMed ID: 6662500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxidation of 3-hydroxyanthranilic acid by Cu,Zn superoxide dismutase: mechanism and possible consequences.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 2001 Apr; 388(2):281-4. PubMed ID: 11368166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase.
    Christen S; Southwell-Keely PT; Stocker R
    Biochemistry; 1992 Sep; 31(34):8090-7. PubMed ID: 1324727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide dismutase enhances the toxicity of 3-hydroxyanthranilic acid to bacteria.
    Ishii T; Iwahashi H; Sugata R; Kido R
    Free Radic Res Commun; 1991; 14(3):187-94. PubMed ID: 2060864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of gluconeogenesis in rat renal cortex slices by metabolites of L-tryptophan in vitro.
    Endou H; Reuter E; Weber HJ
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 287(3):297-308. PubMed ID: 1153021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cinnabarinic acid generated from 3-hydroxyanthranilic acid strongly induces apoptosis in thymocytes through the generation of reactive oxygen species and the induction of caspase.
    Hiramatsu R; Hara T; Akimoto H; Takikawa O; Kawabe T; Isobe K; Nagase F
    J Cell Biochem; 2008 Jan; 103(1):42-53. PubMed ID: 17476692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of superoxide, hydrogen peroxide, and transition metal ions to auto-oxidation of the favism-inducing pyrimidine aglycone, divicine, and its reactions with haemoglobin.
    Winterbourn CC; Benatti U; De Flora A
    Biochem Pharmacol; 1986 Jun; 35(12):2009-15. PubMed ID: 3013207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolinate-induced cortical cholinergic damage: modulation by tryptophan metabolites.
    Jhamandas K; Boegman RJ; Beninger RJ; Bialik M
    Brain Res; 1990 Oct; 529(1-2):185-91. PubMed ID: 2149296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of oxidoreductive reactions of intracellular haemoglobin in the metabolism of 3-hydroxyanthranilic acid in human erythrocytes.
    Tomoda A; Shirasawa E; Nagao S; Minami M; Yoneyama Y
    Biochem J; 1984 Sep; 222(3):755-60. PubMed ID: 6487272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions.
    Netto LE; Stadtman ER
    Arch Biochem Biophys; 1996 Sep; 333(1):233-42. PubMed ID: 8806776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into tryptophan and its metabolites in the regulation of bone metabolism.
    Michalowska M; Znorko B; Kaminski T; Oksztulska-Kolanek E; Pawlak D
    J Physiol Pharmacol; 2015 Dec; 66(6):779-91. PubMed ID: 26769827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-Chloro-3-hydroxyanthranilate, 6-chlorotryptophan and norharmane attenuate quinolinic acid formation by interferon-gamma-stimulated monocytes (THP-1 cells).
    Saito K; Chen CY; Masana M; Crowley JS; Markey SP; Heyes MP
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):11-4. PubMed ID: 8471029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxyanthranilic acid.
    MEHLER AH
    J Biol Chem; 1956 Jan; 218(1):241-54. PubMed ID: 13278331
    [No Abstract]   [Full Text] [Related]  

  • 20. Cinnabarinic acid was formed in damaged mitochondria and its effect on mitochondrial respiration.
    Nagamura Y; Uesugi K; Naito J; Ishiguro I
    Adv Exp Med Biol; 1999; 467():419-23. PubMed ID: 10721084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.