BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 29497702)

  • 1. α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein.
    Wong VSC; Picci C; Swift M; Levinson M; Willis D; Langley B
    eNeuro; 2018; 5(1):. PubMed ID: 29497702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition.
    Kalinski AL; Kar AN; Craver J; Tosolini AP; Sleigh JN; Lee SJ; Hawthorne A; Brito-Vargas P; Miller-Randolph S; Passino R; Shi L; Wong VSC; Picci C; Smith DS; Willis DE; Havton LA; Schiavo G; Giger RJ; Langley B; Twiss JL
    J Cell Biol; 2019 Jun; 218(6):1871-1890. PubMed ID: 31068376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPσ.
    Pendleton JC; Shamblott MJ; Gary DS; Belegu V; Hurtado A; Malone ML; McDonald JW
    Exp Neurol; 2013 Sep; 247():113-21. PubMed ID: 23588220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of chondroitin sulfate proteoglycans-induced axonal growth inhibition by LOTUS.
    Kurihara Y; Saito Y; Takei K
    Neuroscience; 2017 Jul; 356():265-274. PubMed ID: 28571719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans.
    Niederöst BP; Zimmermann DR; Schwab ME; Bandtlow CE
    J Neurosci; 1999 Oct; 19(20):8979-89. PubMed ID: 10516316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of αTAT1 and HDAC5 on axonal regeneration in adult neurons.
    Lin S; Sterling NA; Junker IP; Helm CT; Smith GM
    PLoS One; 2017; 12(5):e0177496. PubMed ID: 28505206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration.
    Sivasankaran R; Pei J; Wang KC; Zhang YP; Shields CB; Xu XM; He Z
    Nat Neurosci; 2004 Mar; 7(3):261-8. PubMed ID: 14770187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CNS axon regeneration inhibitors stimulate an immediate early gene response via MAP kinase-SRF signaling.
    Stern S; Knöll B
    Mol Brain; 2014 Nov; 7():86. PubMed ID: 25406759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin.
    Stiles TL; Dickendesher TL; Gaultier A; Fernandez-Castaneda A; Mantuano E; Giger RJ; Gonias SL
    J Cell Sci; 2013 Jan; 126(Pt 1):209-20. PubMed ID: 23132925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking.
    Wu K; Wang L; Chen Y; Pirooznia M; Singh K; Wälde S; Kehlenbach RH; Scott I; Gucek M; Sack MN
    J Cell Sci; 2018 Nov; 131(22):. PubMed ID: 30333138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.
    Kalebic N; Martinez C; Perlas E; Hublitz P; Bilbao-Cortes D; Fiedorczuk K; Andolfo A; Heppenstall PA
    Mol Cell Biol; 2013 Mar; 33(6):1114-23. PubMed ID: 23275437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The soluble form of LOTUS inhibits Nogo receptor type 1-mediated signaling induced by B lymphocyte stimulator and chondroitin sulfate proteoglycans.
    Kawakami Y; Saito Y; Nakagawa R; Kurihara Y; Takei K
    Neurosci Lett; 2018 Sep; 683():61-68. PubMed ID: 29953923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo.
    Lingor P; Teusch N; Schwarz K; Mueller R; Mack H; Bähr M; Mueller BK
    J Neurochem; 2007 Oct; 103(1):181-9. PubMed ID: 17608642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1.
    Coombes C; Yamamoto A; McClellan M; Reid TA; Plooster M; Luxton GW; Alper J; Howard J; Gardner MK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7176-E7184. PubMed ID: 27803321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling.
    Oh S; You E; Ko P; Jeong J; Keum S; Rhee S
    Biochem Biophys Res Commun; 2017 Jan; 482(1):8-14. PubMed ID: 27836544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons.
    Perdigoto AL; Chaudhry N; Barnes GN; Filbin MT; Carter BD
    Mol Cell Neurosci; 2011 Jan; 46(1):235-44. PubMed ID: 20869442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Receptor Protein Tyrosine Phosphatase Sigma Increases Chondroitin Sulfate Proteoglycan Degradation through Cathepsin B Secretion to Enhance Axon Outgrowth.
    Tran AP; Sundar S; Yu M; Lang BT; Silver J
    J Neurosci; 2018 Jun; 38(23):5399-5414. PubMed ID: 29760175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling.
    Roloff F; Scheiblich H; Dewitz C; Dempewolf S; Stern M; Bicker G
    PLoS One; 2015; 10(2):e0118536. PubMed ID: 25714396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Major Capsid Protein, VP1, of the Mouse Polyomavirus Stimulates the Activity of Tubulin Acetyltransferase 1 by Microtubule Stabilization.
    Horníková L; Bruštíková K; Ryabchenko B; Zhernov I; Fraiberk M; Mariničová Z; Lánský Z; Forstová J
    Viruses; 2020 Feb; 12(2):. PubMed ID: 32085463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the α-tubulin acetyltransferase αTAT1 in the DNA damage response.
    Ryu NM; Kim JM
    J Cell Sci; 2020 Sep; 133(17):. PubMed ID: 32788234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.