BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2949833)

  • 41. Suppression of secondary cellular immunity to a tumor allograft by cyclophosphamide and 1,3-bis(2-chloroethyl)-1-nitrosourea.
    Einstein AB; Fass L; Fefer A
    Cancer Res; 1975 Mar; 35(3):492-6. PubMed ID: 1078784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of human B lymphocytes. XII. Differential effects of in vitro cyclophosphamide on human lymphocyte subpopulations involved in B-cell activation.
    Stevenson HC; Fauci AS
    Immunology; 1980 Mar; 39(3):391-7. PubMed ID: 7002766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active specific immunotherapy with extracted tumor-specific transplantation antigen, cyclophosphamide, and adoptive transfer of tumor-specific cytotoxic T-cell clones.
    Naito K; Pellis NR; Kahan BD
    Cell Immunol; 1988 Jan; 111(1):216-34. PubMed ID: 3257414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection.
    Tsung K; Dolan JP; Tsung YL; Norton JA
    Cancer Res; 2002 Sep; 62(17):5069-75. PubMed ID: 12208763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Consequences of cyclophosphamide treatment in murine lymphocytic choriomeningitis: evidence for cytotoxic T cell replication in vivo.
    Allan JE; Doherty PC
    Scand J Immunol; 1985 Oct; 22(4):367-74. PubMed ID: 3877978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combination therapy with thymosin alpha 1 potentiates the anti-tumor activity of interleukin-2 with cyclophosphamide in the treatment of the Lewis lung carcinoma in mice.
    Mastino A; Favalli C; Grelli S; Rasi G; Pica F; Goldstein AL; Garaci E
    Int J Cancer; 1992 Feb; 50(3):493-9. PubMed ID: 1735618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potentiation of T-cell-mediated immunity by selective suppression of antibody formation with cyclophosphamide.
    Lagrange PH; Mackaness GB; Miller TE
    J Exp Med; 1974 Jun; 139(6):1529-39. PubMed ID: 4598017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pre-existing tumor-sensitized T cells are essential for eradication of established tumors by IL-12 and cyclophosphamide plus IL-12.
    Le HN; Lee NC; Tsung K; Norton JA
    J Immunol; 2001 Dec; 167(12):6765-72. PubMed ID: 11739491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular basis of immunologic interactions in adoptive T cell therapy of established metastases from a syngeneic murine sarcoma.
    Ward BA; Shu S; Chou T; Perry-Lalley D; Chang AE
    J Immunol; 1988 Aug; 141(3):1047-53. PubMed ID: 3260908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sodium diethyldithiocarbamate restores T lymphocyte proliferation, interleukin-2 production and NK activity in cyclophosphamide-immunosuppressed animals.
    Rejas MT; Rojo JM; Ojeda G; Barasoain I
    Immunopharmacology; 1988; 16(3):191-7. PubMed ID: 2855327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AKR.H-2b lymphocytes inhibit the secondary in vitro cytotoxic T-lymphocyte response of primed responder cells to AKR/Gross murine leukemia virus-induced tumor cell stimulation.
    Rich RF; Green WR
    J Virol; 1996 Jan; 70(1):402-14. PubMed ID: 8523554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro differentiation of T-cells capable of mediating the regression of established syngeneic tumors in mice.
    Shu S; Chou T; Rosenberg SA
    Cancer Res; 1987 Mar; 47(5):1354-60. PubMed ID: 3102046
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methods for amplifying the induction and expression of cytotoxic response in vitro to syngeneic and autologous freshly-isolated solid tumors of mice.
    Kedar E; Chriqui-Zeira E; Mitelman S
    Cancer Immunol Immunother; 1984; 18(2):126-34. PubMed ID: 6239683
    [TBL] [Abstract][Full Text] [Related]  

  • 54. IL-2 and IL-4 can co-modulate the generation of cytotoxic T cells through CD8- CD4- splenic lymphocytes.
    Good MF; Powell LW; Halliday JW
    Immunology; 1989 Jun; 67(2):225-30. PubMed ID: 2568977
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo and in vitro synergistic antitumor effect of interleukin-2-cultured tumor-bearer spleen cells and immune fresh spleen cells.
    Kan N; Okino T; Nakanishi M; Satoh K; Ohgaki K; Tobe T
    Cancer Immunol Immunother; 1989; 28(4):260-6. PubMed ID: 2784714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immunosuppression following 7,12-dimethylbenz[a]anthracene exposure in B6C3F1 mice--II. Altered cell-mediated immunity and tumor resistance.
    Dean JH; Ward EC; Murray MJ; Lauer LD; House RV; Stillman W; Hamilton TA; Adams DO
    Int J Immunopharmacol; 1986; 8(2):189-98. PubMed ID: 3086244
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radiosensitivity and responsiveness to recombinant interleukin-2 of effector cells of graft vs. host disease and mixed lymphocyte reaction in mice.
    Stark J; Weiss L; Slavin S
    Isr J Med Sci; 1992 Nov; 28(11):767-72. PubMed ID: 1468887
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anamnestic responses induced by antigen persisting on follicular dendritic cells from cyclophosphamide-treated mice.
    Phipps RP; Mandel TE; Schnizlein CT; Tew JG
    Immunology; 1984 Feb; 51(2):387-97. PubMed ID: 6607214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Therapeutic possibilities of thymopoietin fragments (TP3 and TP4) based on experimental animal models.
    Dénes L; Szende B; Hajós G; Szporny L; Lapis K
    Drugs Exp Clin Res; 1987; 13(5):279-87. PubMed ID: 3500029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The influence of cyclophosphamide on antitumor immunity in mice bearing late-stage tumors.
    Culo F; Klapan I; Kolak T
    Cancer Immunol Immunother; 1993; 36(2):115-22. PubMed ID: 8093855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.