These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 29498383)
1. Self-catalyzed copper-silver complex inks for low-cost fabrication of highly oxidation-resistant and conductive copper-silver hybrid tracks at a low temperature below 100 °C. Li W; Li CF; Lang F; Jiu J; Ueshima M; Wang H; Liu ZQ; Suganuma K Nanoscale; 2018 Mar; 10(11):5254-5263. PubMed ID: 29498383 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. Kanzaki M; Kawaguchi Y; Kawasaki H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247 [TBL] [Abstract][Full Text] [Related]
3. Interface Modified Flexible Printed Conductive Films via Ag Meng Y; Ma T; Pavinatto FJ; MacKenzie JD ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404 [TBL] [Abstract][Full Text] [Related]
4. Printable and Flexible Copper-Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. Li W; Hu D; Li L; Li CF; Jiu J; Chen C; Ishina T; Sugahara T; Suganuma K ACS Appl Mater Interfaces; 2017 Jul; 9(29):24711-24721. PubMed ID: 28675295 [TBL] [Abstract][Full Text] [Related]
5. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield. Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321 [TBL] [Abstract][Full Text] [Related]
6. Hybrid Copper-Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering. Yim C; Sandwell A; Park SS ACS Appl Mater Interfaces; 2016 Aug; 8(34):22369-73. PubMed ID: 27514569 [TBL] [Abstract][Full Text] [Related]
7. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics. Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116 [TBL] [Abstract][Full Text] [Related]
8. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures. Tomotoshi D; Oogami R; Kawasaki H ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413 [TBL] [Abstract][Full Text] [Related]
9. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces. Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883 [TBL] [Abstract][Full Text] [Related]
10. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films. Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883 [TBL] [Abstract][Full Text] [Related]
11. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Shen W; Zhang X; Huang Q; Xu Q; Song W Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051 [TBL] [Abstract][Full Text] [Related]
12. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics. Tomotoshi D; Kawasaki H Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267 [TBL] [Abstract][Full Text] [Related]
13. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates. Farraj Y; Smooha A; Kamyshny A; Magdassi S ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585 [TBL] [Abstract][Full Text] [Related]
14. Inkjet Printing of Reactive Silver Ink on Textiles. Shahariar H; Kim I; Soewardiman H; Jur JS ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures. Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002 [TBL] [Abstract][Full Text] [Related]
16. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films. Stewart IE; Kim MJ; Wiley BJ ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831 [TBL] [Abstract][Full Text] [Related]
17. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]