BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29498486)

  • 1. Red blood cell membrane damage by light-induced thermal gradient under optical trap.
    Chowdhury A; Waghmare D; Dasgupta R; Majumder SK
    J Biophotonics; 2018 Aug; 11(8):e201700222. PubMed ID: 29498486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements.
    de Oliveira MA; Moura DS; Fontes A; de Araujo RE
    J Biomed Opt; 2016 Jul; 21(7):75012. PubMed ID: 27435896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal processes in red blood cells exposed to infrared laser tweezers (λ = 1064 nm).
    Krasnikov I; Seteikin A; Bernhardt I
    J Biophotonics; 2011 Mar; 4(3):206-12. PubMed ID: 20680975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape anisotropy induces rotations in optically trapped red blood cells.
    Bambardekar K; Dharmadhikari JA; Dharmadhikari AK; Yamada T; Kato T; Kono H; Fujimura Y; Sharma S; Mathur D
    J Biomed Opt; 2010; 15(4):041504. PubMed ID: 20799782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells.
    Ahlawat S; Kumar N; Uppal A; Kumar Gupta P
    J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser trap ionization for identification of human erythrocytes with variable hemoglobin quantitation.
    Kelley M; Cooper J; Devito D; Mushi R; Aguinaga MDP; Erenso DB
    J Biomed Opt; 2018 May; 23(5):1-10. PubMed ID: 29851330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers.
    Dasgupta R; Ahlawat S; Verma RS; Uppal A; Gupta PK
    J Biomed Opt; 2010; 15(5):055009. PubMed ID: 21054091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies.
    C G; Shetty S; Bharati S; Chidangil S; Bankapur A
    Anal Chem; 2021 Apr; 93(13):5484-5493. PubMed ID: 33764040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of short term hyperglycemia on human red blood cells studied using Raman spectroscopy and optical trap.
    Singh Y; Chowdhury A; Dasgupta R; Majumder SK
    Eur Biophys J; 2021 Sep; 50(6):867-876. PubMed ID: 34110463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnosis of malarial infection using change in properties of optically trapped red blood cells.
    Paul A; Padmapriya P; Natarajan V
    Biomed J; 2017 Apr; 40(2):101-105. PubMed ID: 28521900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique.
    Agrawal R; Smart T; Nobre-Cardoso J; Richards C; Bhatnagar R; Tufail A; Shima D; H Jones P; Pavesio C
    Sci Rep; 2016 Mar; 6():15873. PubMed ID: 26976672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers.
    Dasgupta R; Verma RS; Ahlawat S; Uppal A; Gupta PK
    J Biomed Opt; 2011 Jul; 16(7):077009. PubMed ID: 21806289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy.
    Mohanty K; Mohanty S; Monajembashi S; Greulich KO
    J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S
    J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Birefringence of a normal human red blood cell and related optomechanics in an optical trap.
    Nagesh BV; Yogesha ; Pratibha R; Parthasarathi P; Iyengar SS; Bhattacharya S; Ananthamurthy S
    J Biomed Opt; 2014; 19(11):115004. PubMed ID: 25396712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode.
    Dasgupta R; Ahlawat S; Verma RS; Gupta PK
    Opt Express; 2011 Apr; 19(8):7680-8. PubMed ID: 21503077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical guiding-based cell focusing for Raman flow cell cytometer.
    Verma RS; Ahlawat S; Uppal A
    Analyst; 2018 May; 143(11):2648-2655. PubMed ID: 29756139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.
    Kinnunen M; Kauppila A; Karmenyan A; Myllylä R
    Opt Lett; 2011 Sep; 36(18):3554-6. PubMed ID: 21931388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of Raman spectroscopy of optically trapped human red blood cell affected by direct current].
    Yue L; Wang G; Fang L; Yao H; Yuan Z; Mo H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):404-8. PubMed ID: 17591270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.