BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29498516)

  • 1. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines.
    Tang X; Jia X; Huang Z
    J Am Chem Soc; 2018 Mar; 140(11):4157-4163. PubMed ID: 29498516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation.
    Jia X; Huang Z
    Nat Chem; 2016 Feb; 8(2):157-61. PubMed ID: 26791899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product.
    Kumar A; Zhou T; Emge TJ; Mironov O; Saxton RJ; Krogh-Jespersen K; Goldman AS
    J Am Chem Soc; 2015 Aug; 137(31):9894-911. PubMed ID: 26200219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex.
    Yao W; Zhang Y; Jia X; Huang Z
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1390-4. PubMed ID: 24382741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis.
    Goldman AS; Roy AH; Huang Z; Ahuja R; Schinski W; Brookhart M
    Science; 2006 Apr; 312(5771):257-61. PubMed ID: 16614220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Production of Linear Aldehydes and Alcohols from Alkenes using Formic Acid as Syngas Surrogate.
    Chen J; Hua K; Liu X; Deng Y; Wei B; Wang H; Sun Y
    Chemistry; 2021 Jul; 27(38):9919-9924. PubMed ID: 33904616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syngas-Free Highly Regioselective Rhodium-Catalyzed Transfer Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes.
    Tan G; Wu Y; Shi Y; You J
    Angew Chem Int Ed Engl; 2019 May; 58(22):7440-7444. PubMed ID: 30963651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex.
    Bézier D; Guan C; Krogh-Jespersen K; Goldman AS; Brookhart M
    Chem Sci; 2016 Apr; 7(4):2579-2586. PubMed ID: 28660029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.
    Raoufmoghaddam S; Drent E; Bouwman E
    ChemSusChem; 2013 Sep; 6(9):1759-73. PubMed ID: 24009108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling.
    Leitch DC; Lam YC; Labinger JA; Bercaw JE
    J Am Chem Soc; 2013 Jul; 135(28):10302-5. PubMed ID: 23799786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes.
    Ahuja R; Punji B; Findlater M; Supplee C; Schinski W; Brookhart M; Goldman AS
    Nat Chem; 2011 Feb; 3(2):167-71. PubMed ID: 21258391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of Iridium Complexes of a Triphosphorus-Pincer Ligand Based on a Secondary Phosphine. Catalytic Alkane Dehydrogenation and the Origin of Extremely High Activity.
    Gordon BM; Lease N; Emge TJ; Hasanayn F; Goldman AS
    J Am Chem Soc; 2022 Mar; 144(9):4133-4146. PubMed ID: 35224972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a practical development of light-driven acceptorless alkane dehydrogenation.
    Chowdhury AD; Weding N; Julis J; Franke R; Jackstell R; Beller M
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6477-81. PubMed ID: 24829085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization.
    Jia X; Zhang L; Qin C; Leng X; Huang Z
    Chem Commun (Camb); 2014 Sep; 50(75):11056-9. PubMed ID: 25101950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.
    Chowdhury AD; Julis J; Grabow K; Hannebauer B; Bentrup U; Adam M; Franke R; Jackstell R; Beller M
    ChemSusChem; 2015 Jan; 8(2):323-30. PubMed ID: 25346450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5.
    Chen K; Tamura M; Yuan Z; Nakagawa Y; Tomishige K
    ChemSusChem; 2013 Apr; 6(4):613-21. PubMed ID: 23463694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.
    Wu XF; Fang X; Wu L; Jackstell R; Neumann H; Beller M
    Acc Chem Res; 2014 Apr; 47(4):1041-53. PubMed ID: 24564478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly active catalysts for the transfer dehydrogenation of alkanes: synthesis and application of novel 7-6-7 ring-based pincer iridium complexes.
    Shi Y; Suguri T; Dohi C; Yamada H; Kojima S; Yamamoto Y
    Chemistry; 2013 Aug; 19(32):10672-89. PubMed ID: 23794532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds.
    Crestani MG; Hickey AK; Gao X; Pinter B; Cavaliere VN; Ito J; Chen CH; Mindiola DJ
    J Am Chem Soc; 2013 Oct; 135(39):14754-67. PubMed ID: 23981228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.