These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29498516)
1. Thermal, Catalytic Conversion of Alkanes to Linear Aldehydes and Linear Amines. Tang X; Jia X; Huang Z J Am Chem Soc; 2018 Mar; 140(11):4157-4163. PubMed ID: 29498516 [TBL] [Abstract][Full Text] [Related]
2. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation. Jia X; Huang Z Nat Chem; 2016 Feb; 8(2):157-61. PubMed ID: 26791899 [TBL] [Abstract][Full Text] [Related]
3. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
4. Dehydrogenation of n-Alkanes by Solid-Phase Molecular Pincer-Iridium Catalysts. High Yields of α-Olefin Product. Kumar A; Zhou T; Emge TJ; Mironov O; Saxton RJ; Krogh-Jespersen K; Goldman AS J Am Chem Soc; 2015 Aug; 137(31):9894-911. PubMed ID: 26200219 [TBL] [Abstract][Full Text] [Related]
5. Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex. Yao W; Zhang Y; Jia X; Huang Z Angew Chem Int Ed Engl; 2014 Jan; 53(5):1390-4. PubMed ID: 24382741 [TBL] [Abstract][Full Text] [Related]
6. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Goldman AS; Roy AH; Huang Z; Ahuja R; Schinski W; Brookhart M Science; 2006 Apr; 312(5771):257-61. PubMed ID: 16614220 [TBL] [Abstract][Full Text] [Related]
7. Selective Production of Linear Aldehydes and Alcohols from Alkenes using Formic Acid as Syngas Surrogate. Chen J; Hua K; Liu X; Deng Y; Wei B; Wang H; Sun Y Chemistry; 2021 Jul; 27(38):9919-9924. PubMed ID: 33904616 [TBL] [Abstract][Full Text] [Related]
8. Syngas-Free Highly Regioselective Rhodium-Catalyzed Transfer Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes. Tan G; Wu Y; Shi Y; You J Angew Chem Int Ed Engl; 2019 May; 58(22):7440-7444. PubMed ID: 30963651 [TBL] [Abstract][Full Text] [Related]
9. Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex. Bézier D; Guan C; Krogh-Jespersen K; Goldman AS; Brookhart M Chem Sci; 2016 Apr; 7(4):2579-2586. PubMed ID: 28660029 [TBL] [Abstract][Full Text] [Related]
10. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides. Raoufmoghaddam S; Drent E; Bouwman E ChemSusChem; 2013 Sep; 6(9):1759-73. PubMed ID: 24009108 [TBL] [Abstract][Full Text] [Related]
11. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling. Leitch DC; Lam YC; Labinger JA; Bercaw JE J Am Chem Soc; 2013 Jul; 135(28):10302-5. PubMed ID: 23799786 [TBL] [Abstract][Full Text] [Related]
12. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes. Ahuja R; Punji B; Findlater M; Supplee C; Schinski W; Brookhart M; Goldman AS Nat Chem; 2011 Feb; 3(2):167-71. PubMed ID: 21258391 [TBL] [Abstract][Full Text] [Related]
13. Reactivity of Iridium Complexes of a Triphosphorus-Pincer Ligand Based on a Secondary Phosphine. Catalytic Alkane Dehydrogenation and the Origin of Extremely High Activity. Gordon BM; Lease N; Emge TJ; Hasanayn F; Goldman AS J Am Chem Soc; 2022 Mar; 144(9):4133-4146. PubMed ID: 35224972 [TBL] [Abstract][Full Text] [Related]
14. Towards a practical development of light-driven acceptorless alkane dehydrogenation. Chowdhury AD; Weding N; Julis J; Franke R; Jackstell R; Beller M Angew Chem Int Ed Engl; 2014 Jun; 53(25):6477-81. PubMed ID: 24829085 [TBL] [Abstract][Full Text] [Related]
15. Iridium complexes of new NCP pincer ligands: catalytic alkane dehydrogenation and alkene isomerization. Jia X; Zhang L; Qin C; Leng X; Huang Z Chem Commun (Camb); 2014 Sep; 50(75):11056-9. PubMed ID: 25101950 [TBL] [Abstract][Full Text] [Related]
16. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide. Chowdhury AD; Julis J; Grabow K; Hannebauer B; Bentrup U; Adam M; Franke R; Jackstell R; Beller M ChemSusChem; 2015 Jan; 8(2):323-30. PubMed ID: 25346450 [TBL] [Abstract][Full Text] [Related]
17. One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5. Chen K; Tamura M; Yuan Z; Nakagawa Y; Tomishige K ChemSusChem; 2013 Apr; 6(4):613-21. PubMed ID: 23463694 [TBL] [Abstract][Full Text] [Related]
18. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account. Wu XF; Fang X; Wu L; Jackstell R; Neumann H; Beller M Acc Chem Res; 2014 Apr; 47(4):1041-53. PubMed ID: 24564478 [TBL] [Abstract][Full Text] [Related]
19. Highly active catalysts for the transfer dehydrogenation of alkanes: synthesis and application of novel 7-6-7 ring-based pincer iridium complexes. Shi Y; Suguri T; Dohi C; Yamada H; Kojima S; Yamamoto Y Chemistry; 2013 Aug; 19(32):10672-89. PubMed ID: 23794532 [TBL] [Abstract][Full Text] [Related]
20. Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds. Crestani MG; Hickey AK; Gao X; Pinter B; Cavaliere VN; Ito J; Chen CH; Mindiola DJ J Am Chem Soc; 2013 Oct; 135(39):14754-67. PubMed ID: 23981228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]