These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29498516)

  • 21. Isomerization of Aldehydes Catalyzed by Rhodium(I) Olefin Complexes.
    Lenges CP; Brookhart M
    Angew Chem Int Ed Engl; 1999 Dec; 38(23):3533-3537. PubMed ID: 10602233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins.
    Jia X; Wang Z; Xia C; Ding K
    Chemistry; 2012 Nov; 18(48):15288-95. PubMed ID: 23135928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iridium bis(phosphinite) p-XPCP pincer complexes: highly active catalysts for the transfer dehydrogenation of alkanes.
    Göttker-Schnetmann I; White P; Brookhart M
    J Am Chem Soc; 2004 Feb; 126(6):1804-11. PubMed ID: 14871112
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Tang X; Gan L; Zhang X; Huang Z
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33219029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rh-catalyzed highly regioselective hydroformylation to linear aldehydes by employing porous organic polymer as a ligand.
    Wang Z; Yang Y
    RSC Adv; 2020 Aug; 10(49):29263-29267. PubMed ID: 35521106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using rh complexes with tetraphosphorus ligands.
    Yu S; Chie YM; Guan ZH; Zhang X
    Org Lett; 2008 Aug; 10(16):3469-72. PubMed ID: 18616258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the mechanism of the dehydroaromatization of hexane to benzene by an iridium pincer catalyst.
    Thawani A; Rajeev R; Sunoj RB
    Chemistry; 2013 Mar; 19(12):4069-77. PubMed ID: 23364899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal.
    Solowey DP; Mane MV; Kurogi T; Carroll PJ; Manor BC; Baik MH; Mindiola DJ
    Nat Chem; 2017 Nov; 9(11):1126-1132. PubMed ID: 29064500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low-Temperature Water-Gas Shift Reaction.
    Li T; Chen F; Lang R; Wang H; Su Y; Qiao B; Wang A; Zhang T
    Angew Chem Int Ed Engl; 2020 May; 59(19):7430-7434. PubMed ID: 32037716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.
    Li H; Mazet C
    Acc Chem Res; 2016 Jun; 49(6):1232-41. PubMed ID: 27159335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient synthesis of azabicyclo[x.y.0]alkane amino acids and congeners by means of Rh-catalyzed cyclohydrocarbonylation.
    Chiou WH; Mizutani N; Ojima I
    J Org Chem; 2007 Mar; 72(6):1871-82. PubMed ID: 17346029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dehydrogenation of saturated CC and BN bonds at cationic N-heterocyclic carbene stabilized M(III) centers (M = Rh, Ir).
    Tang CY; Thompson AL; Aldridge S
    J Am Chem Soc; 2010 Aug; 132(30):10578-91. PubMed ID: 20662531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directly Evolved AlkS-Based Biosensor Platform for Monitoring and High-Throughput Screening of Alkane Production.
    Chen D; Xu S; Li S; Tao S; Li L; Chen S; Wu L
    ACS Synth Biol; 2023 Mar; 12(3):832-841. PubMed ID: 36779413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.
    Mohamad Shahimin MF; Foght JM; Siddique T
    Sci Total Environ; 2016 May; 553():250-257. PubMed ID: 26925736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly regioselective rhodium-catalysed hydroformylation of unsaturated esters: the first practical method for quaternary selective carbonylation.
    Clarke ML; Roff GJ
    Chemistry; 2006 Oct; 12(31):7978-86. PubMed ID: 16991187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption and dehydrogenation of C
    Ding X; Zhu H; Ren H; Liu D; Yu Z; Shi N; Guo W
    Phys Chem Chem Phys; 2020 Oct; 22(38):21835-21843. PubMed ID: 32966439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regioselective hydroformylation of propene catalysed by rhodium-zeolite.
    Zhang X; Yan T; Hou H; Yin J; Wan H; Sun X; Zhang Q; Sun F; Wei Y; Dong M; Fan W; Wang J; Sun Y; Zhou X; Wu K; Yang Y; Li Y; Cao Z
    Nature; 2024 May; 629(8012):597-602. PubMed ID: 38658762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly regioselective hydroformylation of styrene and its derivatives catalyzed by Rh complex with tetraphosphorus ligands.
    Yu S; Chie YM; Guan ZH; Zou Y; Li W; Zhang X
    Org Lett; 2009 Jan; 11(1):241-4. PubMed ID: 19053715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of alkanes, alcohols, and aldehydes using bioluminescence.
    Minak-Bernero V; Bare RE; Haith CE; Grossman MJ
    Biotechnol Bioeng; 2004 Jul; 87(2):170-7. PubMed ID: 15236245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.