These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 29498622)
41. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Martens EC; Goodrich-Blair H Cell Microbiol; 2005 Dec; 7(12):1723-35. PubMed ID: 16309459 [TBL] [Abstract][Full Text] [Related]
42. nilR is necessary for co-ordinate repression of Xenorhabdus nematophila mutualism genes. Cowles CE; Goodrich-Blair H Mol Microbiol; 2006 Nov; 62(3):760-71. PubMed ID: 17076669 [TBL] [Abstract][Full Text] [Related]
43. A New Member of the Growing Family of Contact-Dependent Growth Inhibition Systems in Xenorhabdus doucetiae. Ogier JC; Duvic B; Lanois A; Givaudan A; Gaudriault S PLoS One; 2016; 11(12):e0167443. PubMed ID: 27907104 [TBL] [Abstract][Full Text] [Related]
44. Inactivation of a novel gene produces a phenotypic variant cell and affects the symbiotic behavior of Xenorhabdus nematophilus. Volgyi A; Fodor A; Forst S Appl Environ Microbiol; 2000 Apr; 66(4):1622-8. PubMed ID: 10742251 [TBL] [Abstract][Full Text] [Related]
45. Studies of the dynamic expression of the Xenorhabdus FliAZ regulon reveal atypical iron-dependent regulation of the flagellin and haemolysin genes during insect infection. Jubelin G; Pagès S; Lanois A; Boyer MH; Gaudriault S; Ferdy JB; Givaudan A Environ Microbiol; 2011 May; 13(5):1271-84. PubMed ID: 21332625 [TBL] [Abstract][Full Text] [Related]
46. Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts. McMullen JG; McQuade R; Ogier JC; Pagès S; Gaudriault S; Patricia Stock S Microbiology (Reading); 2017 Apr; 163(4):510-522. PubMed ID: 28430102 [TBL] [Abstract][Full Text] [Related]
47. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes. Roder AC; Stock SP J Invertebr Pathol; 2018 Mar; 153():65-74. PubMed ID: 29458072 [TBL] [Abstract][Full Text] [Related]
48. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. An R; Sreevatsan S; Grewal PS BMC Genomics; 2009 Sep; 10():433. PubMed ID: 19754939 [TBL] [Abstract][Full Text] [Related]
49. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila. Guo S; Wang Z; Liu B; Gao J; Fang X; Tang Q; Bilal M; Wang Y; Zhang X Microb Biotechnol; 2019 May; 12(3):447-458. PubMed ID: 30623566 [TBL] [Abstract][Full Text] [Related]
50. Xenocin export by the flagellar type III pathway in Xenorhabdus nematophila. Singh P; Park D; Forst S; Banerjee N J Bacteriol; 2013 Apr; 195(7):1400-10. PubMed ID: 23335409 [TBL] [Abstract][Full Text] [Related]
51. Type 1 fimbriae of insecticidal bacterium Xenorhabdus nematophila is necessary for growth and colonization of its symbiotic host nematode Steinernema carpocapsiae. Chandra H; Khandelwal P; Khattri A; Banerjee N Environ Microbiol; 2008 May; 10(5):1285-95. PubMed ID: 18279345 [TBL] [Abstract][Full Text] [Related]
52. Analysis of Xenorhabdus nematophila metabolic mutants yields insight into stages of Steinernema carpocapsae nematode intestinal colonization. Martens EC; Russell FM; Goodrich-Blair H Mol Microbiol; 2005 Oct; 58(1):28-45. PubMed ID: 16164547 [TBL] [Abstract][Full Text] [Related]
53. Pyrimidine nucleoside salvage confers an advantage to Xenorhabdus nematophila in its host interactions. Orchard SS; Goodrich-Blair H Appl Environ Microbiol; 2005 Oct; 71(10):6254-9. PubMed ID: 16204546 [TBL] [Abstract][Full Text] [Related]
54. Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sexta immunity. Park Y; Herbert EE; Cowles CE; Cowles KN; Menard ML; Orchard SS; Goodrich-Blair H Cell Microbiol; 2007 Mar; 9(3):645-56. PubMed ID: 17002783 [TBL] [Abstract][Full Text] [Related]
55. The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific. Lanois-Nouri A; Pantel L; Fu J; Houard J; Ogier JC; Polikanov YS; Racine E; Wang H; Gaudriault S; Givaudan A; Gualtieri M mBio; 2022 Feb; 13(1):e0282621. PubMed ID: 35012352 [TBL] [Abstract][Full Text] [Related]
56. Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari. Kuwata R; Qiu LH; Wang W; Harada Y; Yoshida M; Kondo E; Yoshiga T Int J Syst Evol Microbiol; 2013 May; 63(Pt 5):1690-1695. PubMed ID: 22922533 [TBL] [Abstract][Full Text] [Related]
57. They've got a ticket to ride: Xenorhabdus nematophila-Steinernema carpocapsae symbiosis. Goodrich-Blair H Curr Opin Microbiol; 2007 Jun; 10(3):225-30. PubMed ID: 17553732 [TBL] [Abstract][Full Text] [Related]
58. CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus. Herbert Tran EE; Andersen AW; Goodrich-Blair H Appl Environ Microbiol; 2009 Jun; 75(12):4007-14. PubMed ID: 19376901 [TBL] [Abstract][Full Text] [Related]
59. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila. Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647 [TBL] [Abstract][Full Text] [Related]
60. Comparative analysis of P2-type remnant prophage loci in Xenorhabdus bovienii and Xenorhabdus nematophila required for xenorhabdicin production. Morales-Soto N; Gaudriault S; Ogier JC; Thappeta KR; Forst S FEMS Microbiol Lett; 2012 Aug; 333(1):69-76. PubMed ID: 22612724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]