These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29498702)

  • 1. High-Precision Phenotyping of Grape Bunch Architecture Using Fast 3D Sensor and Automation.
    Rist F; Herzog K; Mack J; Richter R; Steinhage V; Töpfer R
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29498702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to
    Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R
    Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454
    [No Abstract]   [Full Text] [Related]  

  • 3. Impedance of the grape berry cuticle as a novel phenotypic trait to estimate resistance to Botrytis cinerea.
    Herzog K; Wind R; Töpfer R
    Sensors (Basel); 2015 May; 15(6):12498-512. PubMed ID: 26024417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.
    Rose JC; Kicherer A; Wieland M; Klingbeil L; Töpfer R; Kuhlmann H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gibberellic acid (GA
    Gao XT; Wu MH; Sun D; Li HQ; Chen WK; Yang HY; Liu FQ; Wang QC; Wang YY; Wang J; He F
    J Sci Food Agric; 2020 Jul; 100(9):3729-3740. PubMed ID: 32266978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk Pathway between Trehalose Metabolism and Cytokinin Degradation for the Determination of the Number of Berries per Bunch in Grapes.
    Moriyama A; Yamaguchi C; Enoki S; Aoki Y; Suzuki S
    Cells; 2020 Oct; 9(11):. PubMed ID: 33138306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz.
    Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K
    J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical leaf removal for improved Botrytis bunch rot control in
    Hed B; Centinari M
    Plant Dis; 2024 Jun; ():. PubMed ID: 38902880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults.
    Steel CC; Blackman JW; Schmidtke LM
    J Agric Food Chem; 2013 Jun; 61(22):5189-206. PubMed ID: 23675852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine.
    Rossmann S; Richter R; Sun H; Schneeberger K; Töpfer R; Zyprian E; Theres K
    Plant J; 2020 Mar; 101(5):1234-1248. PubMed ID: 31663642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association analysis of grapevine bunch traits using a comprehensive approach.
    Tello J; Torres-Pérez R; Grimplet J; Ibáñez J
    Theor Appl Genet; 2016 Feb; 129(2):227-42. PubMed ID: 26536891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of gibberellin applications before flowering on the phenotype, ripening, and flavonoid compounds of Syrah grape berries.
    Xie S; Liu Y; Chen H; Yang B; Ge M; Zhang Z
    J Sci Food Agric; 2022 Oct; 102(13):6100-6111. PubMed ID: 35474458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine.
    Tello J; Torres-Pérez R; Grimplet J; Carbonell-Bejerano P; Martínez-Zapater JM; Ibáñez J
    BMC Plant Biol; 2015 Oct; 15():253. PubMed ID: 26499326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays.
    Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP
    Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Wild, Wine, Table, and Raisin Grapevine (
    Berhe DT; Belew D
    ScientificWorldJournal; 2022; 2022():6852704. PubMed ID: 35132309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated field phenotyping pipeline for application in grapevine research.
    Kicherer A; Herzog K; Pflanz M; Wieland M; Rüger P; Kecke S; Kuhlmann H; Töpfer R
    Sensors (Basel); 2015 Feb; 15(3):4823-36. PubMed ID: 25730485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar.
    Alabi OJ; Casassa LF; Gutha LR; Larsen RC; Henick-Kling T; Harbertson JF; Naidu RA
    PLoS One; 2016; 11(2):e0149666. PubMed ID: 26919614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applied GA
    Berli FJ; Alonso R; Pharis RP; Bottini R
    J Sci Food Agric; 2022 May; 102(7):2950-2959. PubMed ID: 34767265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the phenolic composition and yield of 'BRS Vitoria' seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS.
    Colombo RC; Roberto SR; Nixdorf SL; Pérez-Navarro J; Gómez-Alonso S; Mena-Morales A; García-Romero E; Azeredo Gonçalves LS; da Cruz MA; de Carvalho DU; Madeira TB; Watanabe LS; de Souza RT; Hermosín-Gutiérrez I
    Food Res Int; 2020 Apr; 130():108955. PubMed ID: 32156395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.