These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29498852)

  • 1. Insertion of Ni(I) into Porphyrins at Room Temperature: Preparation of Ni(II)porphyrins, and Ni(II)chlorins and Observation of Hydroporphyrin Intermediates.
    Peters MK; Herges R
    Inorg Chem; 2018 Mar; 57(6):3177-3182. PubMed ID: 29498852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophilic fluoroalkylation of Ni(II) N-confused porphyrins with fluoroalkylarylsulfonium salts.
    Hao F; Jiang HW; Zong G; Zhou Z; Du RB; Chen QY; Xiao JC
    J Org Chem; 2012 Apr; 77(7):3604-8. PubMed ID: 22394335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and reactions of the first fluoroalkylated Ni(II) N-confused porphyrins.
    Jiang HW; Chen QY; Xiao JC; Gu YC
    Chem Commun (Camb); 2008 Nov; (42):5435-7. PubMed ID: 18985235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonplanar heme deformations and excited state displacements in nickel porphyrins detected by Raman spectroscopy at soret excitation.
    Huang Q; Medforth CJ; Schweitzer-Stenner R
    J Phys Chem A; 2005 Nov; 109(46):10493-502. PubMed ID: 16834304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid.
    Ito T; Hayashi Y; Shimizu S; Shin JY; Kobayashi N; Shinokubo H
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8542-5. PubMed ID: 22811074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and computational characterization of the nickel-containing F430 cofactor of methyl-coenzyme M reductase.
    Craft JL; Horng YC; Ragsdale SW; Brunold TC
    J Biol Inorg Chem; 2004 Jan; 9(1):77-89. PubMed ID: 14663648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of substituents and nonplanarity on nickel and copper porphyrin electrochemistry: first observation of a Cu(II)/Cu(III) reaction in nonaqueous media.
    Fang Y; Senge MO; Van Caemelbecke E; Smith KM; Medforth CJ; Zhang M; Kadish KM
    Inorg Chem; 2014 Oct; 53(19):10772-8. PubMed ID: 25253031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT at its best: metal- versus ligand-centered reduction in nickel hydroporphyrins.
    Ryeng H; Gonzalez E; Ghosh A
    J Phys Chem B; 2008 Nov; 112(47):15158-73. PubMed ID: 18975889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calix[4]pyrrole-capped metalloporphyrins as ditopic receptor models for anions.
    Panda PK; Lee CH
    Org Lett; 2004 Mar; 6(5):671-4. PubMed ID: 14986946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel-Induced Skeletal Rearrangement of Free Base trans-Chlorins into Monofused Ni
    Chaudhri N; Grover N; Sankar M
    Inorg Chem; 2018 Sep; 57(18):11349-11360. PubMed ID: 30179467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative chemistry of nickel porphyrins.
    Renner MW; Fajer J
    J Biol Inorg Chem; 2001 Oct; 6(8):823-30. PubMed ID: 11713690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. III. The nu(4) and nu(7) modes of nonplanar nickel porphyrin models.
    Zhang Y; Straub JE
    J Chem Phys; 2009 Jun; 130(21):215101. PubMed ID: 19508100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripherally Silylated Porphyrins.
    Kato K; Fujimoto K; Yorimitsu H; Osuka A
    Chemistry; 2015 Sep; 21(39):13522-5. PubMed ID: 26356498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselective photoreduction of zinc(II) porphyrins to give chlorins.
    Iakovides P; Simpson DJ; Smith KM
    Photochem Photobiol; 1991 Sep; 54(3):335-43. PubMed ID: 1784634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast stimulated emission and structural dynamics in nickel porphyrins.
    Zhang X; Wasinger EC; Muresan AZ; Attenkofer K; Jennings G; Lindsey JS; Chen LX
    J Phys Chem A; 2007 Nov; 111(46):11736-42. PubMed ID: 17966996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-valent transition metal centers and noninnocent ligands in metalloporphyrins and related molecules: a broad overview based on quantum chemical calculations.
    Ghosh A; Steene E
    J Biol Inorg Chem; 2001 Sep; 6(7):739-52. PubMed ID: 11681708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and catalyst-free synthesis of meso-O-, -S-, and -C-substituted porphyrins.
    Chen Q; Zhu YZ; Fan QJ; Zhang SC; Zheng JY
    Org Lett; 2014 Mar; 16(6):1590-3. PubMed ID: 24597715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratiometric and colorimetric "naked eye" selective detection of CN(-) ions by electron deficient Ni(II) porphyrins and their reversibility studies.
    Kumar R; Chaudhri N; Sankar M
    Dalton Trans; 2015 May; 44(19):9149-57. PubMed ID: 25901694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nickel(II) complex of guanidinium phenyl porphyrin, a specific G-quadruplex ligand, targets telomeres and leads to POT1 mislocalization in culture cells.
    Sabater L; Nicolau-Travers ML; De Rache A; Prado E; Dejeu J; Bombarde O; Lacroix J; Calsou P; Defrancq E; Mergny JL; Gomez D; Pratviel G
    J Biol Inorg Chem; 2015 Jun; 20(4):729-38. PubMed ID: 25846142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metalloporphyrin-capped calix[4]pyrroles: heteroditopic receptor models for anion recognition and ligand fixation.
    Panda PK; Lee CH
    J Org Chem; 2005 Apr; 70(8):3148-56. PubMed ID: 15822977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.