These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29499195)

  • 1. Disruption of LRRK2 in Zebrafish leads to hyperactivity and weakened antibacterial response.
    Sheng D; See K; Hu X; Yu D; Wang Y; Liu Q; Li F; Lu M; Zhao J; Liu J
    Biochem Biophys Res Commun; 2018 Mar; 497(4):1104-1109. PubMed ID: 29499195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lrrk2 modulation of Wnt signaling during zebrafish development.
    Wint JM; Sirotkin HI
    J Neurosci Res; 2020 Oct; 98(10):1831-1842. PubMed ID: 32623786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation.
    Prabhudesai S; Bensabeur FZ; Abdullah R; Basak I; Baez S; Alves G; Holtzman NG; Larsen JP; Møller SG
    J Neurosci Res; 2016 Aug; 94(8):717-35. PubMed ID: 27265751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LRRK2 and the Immune System.
    Dzamko NL
    Adv Neurobiol; 2017; 14():123-143. PubMed ID: 28353282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of lrrk2 causes early developmental abnormalities and age-dependent increase of monoamine catabolism in the zebrafish brain.
    Suzzi S; Ahrendt R; Hans S; Semenova SA; Chekuru A; Wirsching P; Kroehne V; Bilican S; Sayed S; Winkler S; Spieß S; Machate A; Kaslin J; Panula P; Brand M
    PLoS Genet; 2021 Sep; 17(9):e1009794. PubMed ID: 34516550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish.
    Ren G; Xin S; Li S; Zhong H; Lin S
    PLoS One; 2011; 6(6):e20630. PubMed ID: 21698186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond.
    Göring S; Taymans JM; Baekelandt V; Schmidt B
    Bioorg Med Chem Lett; 2014 Oct; 24(19):4630-4637. PubMed ID: 25219901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity.
    Guo L; Gandhi PN; Wang W; Petersen RB; Wilson-Delfosse AL; Chen SG
    Exp Cell Res; 2007 Oct; 313(16):3658-70. PubMed ID: 17706965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation.
    Yan R; Liu Z
    Protein Cell; 2017 Jan; 8(1):55-66. PubMed ID: 27830463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRRK2 regulation of immune-pathways and inflammatory disease.
    Wallings RL; Tansey MG
    Biochem Soc Trans; 2019 Dec; 47(6):1581-1595. PubMed ID: 31769472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine-rich repeat kinase 2 inhibitors: a patent review (2014-2016).
    Galatsis P
    Expert Opin Ther Pat; 2017 Jun; 27(6):667-676. PubMed ID: 28117607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson's disease.
    Infante J; Prieto C; Sierra M; Sánchez-Juan P; González-Aramburu I; Sánchez-Quintana C; Berciano J; Combarros O; Sainz J
    Neurobiol Aging; 2016 Feb; 38():214.e1-214.e5. PubMed ID: 26675812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
    Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z
    J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkinson's disease-associated mutant LRRK2 phosphorylates Rab7L1 and modifies trans-Golgi morphology.
    Fujimoto T; Kuwahara T; Eguchi T; Sakurai M; Komori T; Iwatsubo T
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1708-1715. PubMed ID: 29223392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leucine-rich repeat kinase 2: relevance to Parkinson's disease.
    Guo L; Wang W; Chen SG
    Int J Biochem Cell Biol; 2006; 38(9):1469-75. PubMed ID: 16600664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G2385R and I2020T Mutations Increase LRRK2 GTPase Activity.
    Ho DH; Jang J; Joe EH; Son I; Seo H; Seol W
    Biomed Res Int; 2016; 2016():7917128. PubMed ID: 27314038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LRRK2: from kinase to GTPase to microtubules and back.
    Blanca Ramírez M; Lara Ordóñez AJ; Fdez E; Hilfiker S
    Biochem Soc Trans; 2017 Feb; 45(1):141-146. PubMed ID: 28202667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.
    Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M
    Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein.
    Guaitoli G; Gilsbach BK; Raimondi F; Gloeckner CJ
    Biochem Soc Trans; 2016 Dec; 44(6):1635-1641. PubMed ID: 27913672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells.
    Speidel A; Felk S; Reinhardt P; Sterneckert J; Gillardon F
    PLoS One; 2016; 11(11):e0165949. PubMed ID: 27812199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.