BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29499209)

  • 1. Curcumin restrains hepatic glucose production by blocking cAMP/PKA signaling and reducing acetyl CoA accumulation in high-fat diet (HFD)-fed mice.
    Wang Z; Xu D; She L; Zhang Y; Wei Q; Aa J; Wang G; Liu B; Xie Y
    Mol Cell Endocrinol; 2018 Oct; 474():127-136. PubMed ID: 29499209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Berberine Reduces Pyruvate-driven Hepatic Glucose Production by Limiting Mitochondrial Import of Pyruvate through Mitochondrial Pyruvate Carrier 1.
    Li A; Liu Q; Li Q; Liu B; Yang Y; Zhang N
    EBioMedicine; 2018 Aug; 34():243-255. PubMed ID: 30093307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1α induction in HFD-fed mice.
    Xiao N; Lou MD; Lu YT; Yang LL; Liu Q; Liu B; Qi LW; Li P
    Diabetologia; 2017 Jun; 60(6):1084-1093. PubMed ID: 28280902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucagon up-regulates hepatic mitochondrial pyruvate carrier 1 through cAMP-responsive element-binding protein; inhibition of hepatic gluconeogenesis by ginsenoside Rb1.
    Lou MD; Li J; Cheng Y; Xiao N; Ma G; Li P; Liu B; Liu Q; Qi LW
    Br J Pharmacol; 2019 Aug; 176(16):2962-2976. PubMed ID: 31166615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake.
    Small L; Brandon AE; Quek LE; Krycer JR; James DE; Turner N; Cooney GJ
    Am J Physiol Endocrinol Metab; 2018 Aug; 315(2):E258-E266. PubMed ID: 29406780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.
    Wang L; Zhang B; Huang F; Liu B; Xie Y
    J Lipid Res; 2016 Jul; 57(7):1243-55. PubMed ID: 27220352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression.
    Zingg JM; Hasan ST; Nakagawa K; Canepa E; Ricciarelli R; Villacorta L; Azzi A; Meydani M
    Biofactors; 2017 Jan; 43(1):42-53. PubMed ID: 27355903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of benfluorex on fatty acid and glucose metabolism in isolated rat hepatocytes: from metabolic fluxes to gene expression.
    Kohl C; Ravel D; Girard J; Pégorier JP
    Diabetes; 2002 Aug; 51(8):2363-8. PubMed ID: 12145146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of SIK1 by phanginin A inhibits hepatic gluconeogenesis by increasing PDE4 activity and suppressing the cAMP signaling pathway.
    Liu S; Huang S; Wu X; Feng Y; Shen Y; Zhao QS; Leng Y
    Mol Metab; 2020 Nov; 41():101045. PubMed ID: 32599076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of NF-κB2 (p52) restrains hepatic glucagon response via preserving PDE4B induction.
    Zhang WS; Pan A; Zhang X; Ying A; Ma G; Liu BL; Qi LW; Liu Q; Li P
    Nat Commun; 2019 Sep; 10(1):4303. PubMed ID: 31541100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cod liver oil ameliorates sodium nitrite-induced insulin resistance and degradation of rat hepatic glycogen through inhibition of cAMP/PKA pathway.
    Al-Gayyar MM; Alyoussef A; Hamdan AM; Abbas A; Darweish MM; El-Hawwary AA
    Life Sci; 2015 Jan; 120():13-21. PubMed ID: 25447450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of mitochondria-generated acetyl-CoA by pyruvate dehydrogenase complex downregulates gene expression in the hepatic de novo lipogenic pathway.
    Mahmood S; Birkaya B; Rideout TC; Patel MS
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E117-27. PubMed ID: 27166281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.
    Rauckhorst AJ; Gray LR; Sheldon RD; Fu X; Pewa AD; Feddersen CR; Dupuy AJ; Gibson-Corley KN; Cox JE; Burgess SC; Taylor EB
    Mol Metab; 2017 Nov; 6(11):1468-1479. PubMed ID: 29107293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice.
    Xie C; Jiang C; Shi J; Gao X; Sun D; Sun L; Wang T; Takahashi S; Anitha M; Krausz KW; Patterson AD; Gonzalez FJ
    Diabetes; 2017 Mar; 66(3):613-626. PubMed ID: 28223344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.
    Um MY; Hwang KH; Ahn J; Ha TY
    Basic Clin Pharmacol Toxicol; 2013 Sep; 113(3):152-7. PubMed ID: 23574662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of flux through pyruvate dehydrogenase and pyruvate carboxylase in rat hepatocytes. Effects of fatty acids and glucagon.
    Agius L; Alberti KG
    Eur J Biochem; 1985 Nov; 152(3):699-707. PubMed ID: 3932072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model.
    Lee P; Leong W; Tan T; Lim M; Han W; Radda GK
    Hepatology; 2013 Feb; 57(2):515-24. PubMed ID: 22911492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin inhibits hepatic stellate cell activation via suppression of succinate-associated HIF-1α induction.
    She L; Xu D; Wang Z; Zhang Y; Wei Q; Aa J; Wang G; Liu B; Xie Y
    Mol Cell Endocrinol; 2018 Nov; 476():129-138. PubMed ID: 29746885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of inhibition of gluconeogenesis and ureagenesis by sodium benzoate.
    Cyr DM; Egan SG; Brini CM; Tremblay GC
    Biochem Pharmacol; 1991 Jul; 42(3):645-54. PubMed ID: 1677573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice.
    Takagi H; Ikehara T; Kashiwagi Y; Hashimoto K; Nanchi I; Shimazaki A; Nambu H; Yukioka H
    Endocrinology; 2018 Aug; 159(8):3007-3019. PubMed ID: 29931154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.