BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 29499437)

  • 21. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoreactive Hydrogel Stiffness Influences Volumetric Muscle Loss Repair.
    Basurto IM; Passipieri JA; Gardner GM; Smith KK; Amacher AR; Hansrisuk AI; Christ GJ; Caliari SR
    Tissue Eng Part A; 2022 Apr; 28(7-8):312-329. PubMed ID: 34409861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.
    Carnes ME; Pins GD
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32751847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.
    Wang L; Wu Y; Guo B; Ma PX
    ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D cellular alignment and biomimetic mechanical stimulation enhance human adipose-derived stem cell myogenesis.
    Ergene E; Sezlev Bilecen D; Kaya B; Yilgor Huri P; Hasirci V
    Biomed Mater; 2020 Jul; 15(5):055017. PubMed ID: 32442983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing the Repair of Substantial Volumetric Muscle Loss by Creating Different Levels of Blood Vessel Networks Using Pre-Vascularized Nerve Hydrogel Implants.
    Wei SY; Chen PY; Tsai MC; Hsu TL; Hsieh CC; Fan HW; Chen TH; Xie RH; Chen GY; Chen YC
    Adv Healthc Mater; 2024 May; 13(13):e2303320. PubMed ID: 38354361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerobic exercise and scaffolds with hierarchical porosity synergistically promote functional recovery post volumetric muscle loss.
    Endo Y; Samandari M; Karvar M; Mostafavi A; Quint J; Rinoldi C; Yazdi IK; Swieszkowski W; Mauney J; Agarwal S; Tamayol A; Sinha I
    Biomaterials; 2023 May; 296():122058. PubMed ID: 36841214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss.
    Eugenis I; Wu D; Rando TA
    Biomaterials; 2021 Nov; 278():121173. PubMed ID: 34619561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration.
    Ge J; Liu K; Niu W; Chen M; Wang M; Xue Y; Gao C; Ma PX; Lei B
    Biomaterials; 2018 Aug; 175():19-29. PubMed ID: 29793089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.
    Grasman JM; Do DM; Page RL; Pins GD
    Biomaterials; 2015 Dec; 72():49-60. PubMed ID: 26344363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural polymeric hydrogel evaluation for skeletal muscle tissue engineering.
    Pollot BE; Rathbone CR; Wenke JC; Guda T
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):672-679. PubMed ID: 28306190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: a promising tool to regenerate myocardial function.
    Blumenthal B; Golsong P; Poppe A; Heilmann C; Schlensak C; Beyersdorf F; Siepe M
    Artif Organs; 2010 Feb; 34(2):E46-54. PubMed ID: 20420589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effect of high-intensity interval training and stem cell transplantation with amniotic membrane scaffold on repair and rehabilitation after volumetric muscle loss injury.
    Izadi MR; Habibi A; Khodabandeh Z; Nikbakht M
    Cell Tissue Res; 2021 Feb; 383(2):765-779. PubMed ID: 33128624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss.
    Patel KH; Talovic M; Dunn AJ; Patel A; Vendrell S; Schwartz M; Garg K
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2528-2537. PubMed ID: 32052931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating the Vascular Niche: Three-Dimensional Co-culture of Human Skeletal Muscle Stem Cells and Endothelial Cells.
    Latroche C; Weiss-Gayet M; Chazaud B
    Methods Mol Biol; 2019; 2002():121-128. PubMed ID: 30242569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration.
    Marcinczyk M; Elmashhady H; Talovic M; Dunn A; Bugis F; Garg K
    Biomaterials; 2017 Oct; 141():233-242. PubMed ID: 28697464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
    Grasman JM; Zayas MJ; Page RL; Pins GD
    Acta Biomater; 2015 Oct; 25():2-15. PubMed ID: 26219862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of mitochondrial energy metabolism by melatonin promotes vascularized skeletal muscle regeneration in a volumetric muscle loss model.
    Ge X; Wang C; Yang G; Maimaiti D; Hou M; Liu H; Yang H; Chen X; Xu Y; He F
    Free Radic Biol Med; 2024 Jan; 210():146-157. PubMed ID: 38008130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-delivery of fibrin-laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma.
    Genovese P; Patel A; Ziemkiewicz N; Paoli A; Bruns J; Case N; Zustiak SP; Garg K
    J Tissue Eng Regen Med; 2021 Dec; 15(12):1131-1143. PubMed ID: 34551191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.