These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 29499574)
1. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. Chen J; Li K; Le XC; Zhu L Environ Pollut; 2018 Jun; 237():308-317. PubMed ID: 29499574 [TBL] [Abstract][Full Text] [Related]
2. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. Chen J; Le XC; Zhu L Environ Int; 2019 Dec; 133(Pt A):105154. PubMed ID: 31521816 [TBL] [Abstract][Full Text] [Related]
3. The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). Li K; Chen J; Zhu L Environ Pollut; 2018 Apr; 235():692-699. PubMed ID: 29339338 [TBL] [Abstract][Full Text] [Related]
4. Polybrominated diphenyl ethers (PBDEs) decreased the protein quality of rice grains by disturbing amino acid metabolism. Xu F; Chen J; Wang W; Zhu L Environ Pollut; 2024 Jul; 353():124162. PubMed ID: 38754691 [TBL] [Abstract][Full Text] [Related]
5. Gender-specific metabolic responses in gonad of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether. Ji C; Zhao J; Wu H Environ Toxicol Pharmacol; 2014 May; 37(3):1116-22. PubMed ID: 24792125 [TBL] [Abstract][Full Text] [Related]
6. Metabolic profiling on the effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in MCF-7 cells. Wei J; Xiang L; Yuan Z; Li S; Yang C; Liu H; Jiang Y; Cai Z Chemosphere; 2018 Feb; 192():297-304. PubMed ID: 29117588 [TBL] [Abstract][Full Text] [Related]
7. In vivo metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant. Sun J; Liu J; Yu M; Wang C; Sun Y; Zhang A; Wang T; Lei Z; Jiang G Environ Sci Technol; 2013 Apr; 47(8):3701-7. PubMed ID: 23510101 [TBL] [Abstract][Full Text] [Related]
8. Proteomic and metabolomic analysis of earthworm Eisenia fetida exposed to different concentrations of 2,2',4,4'-tetrabromodiphenyl ether. Ji C; Wu H; Wei L; Zhao J; Lu H; Yu J J Proteomics; 2013 Oct; 91():405-16. PubMed ID: 23954424 [TBL] [Abstract][Full Text] [Related]
9. Metabolomics analysis of TiO Wu B; Zhu L; Le XC Environ Pollut; 2017 Nov; 230():302-310. PubMed ID: 28667911 [TBL] [Abstract][Full Text] [Related]
10. Cellular metabolomics reveals glutamate and pyrimidine metabolism pathway alterations induced by BDE-47 in human neuroblastoma SK-N-SH cells. Tang Z; Li Y; Jiang Y; Cheng J; Xu S; Zhang J Ecotoxicol Environ Saf; 2019 Oct; 182():109427. PubMed ID: 31302334 [TBL] [Abstract][Full Text] [Related]
11. Cytotoxicity and apoptosis induction on RTG-2 cells of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209). Jin S; Yang F; Hui Y; Xu Y; Lu Y; Liu J Toxicol In Vitro; 2010 Jun; 24(4):1190-6. PubMed ID: 20159034 [TBL] [Abstract][Full Text] [Related]
12. Glutathione-Ascorbate Cycle Is an Early Warning Indicator of Toxicity of BDE-47 in Mangroves. Wang Y; Tam NFY J Environ Qual; 2018 Mar; 47(2):212-220. PubMed ID: 29634796 [TBL] [Abstract][Full Text] [Related]
13. A study of oxidative stress induced by two polybrominated diphenyl ethers in the rotifer Brachionus plicatilis. Zhang J; Wang Y; Sun KM; Fang K; Tang X Mar Pollut Bull; 2016 Dec; 113(1-2):408-413. PubMed ID: 27765404 [TBL] [Abstract][Full Text] [Related]
14. 2,2',4,4'-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPK-mediated p53-independent pathway. You X; Xi J; Liu W; Cao Y; Tang W; Zhang X; Yu Y; Luan Y Environ Pollut; 2018 Nov; 242(Pt A):887-893. PubMed ID: 30041162 [TBL] [Abstract][Full Text] [Related]
15. α-Galactosidase interacts with persistent organic pollutants to induce oxidative stresses in rice (Oryza sativa L.). Sun Y; Chen J; Wang W; Zhu L Environ Pollut; 2023 Oct; 335():122353. PubMed ID: 37562527 [TBL] [Abstract][Full Text] [Related]
16. Physiological response and oxidative transformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by a Chlorella isolate. Deng D; Chen HX; Wong YS; Tam NFY Sci Total Environ; 2020 Nov; 744():140869. PubMed ID: 32711313 [TBL] [Abstract][Full Text] [Related]
17. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells. He H; Shi X; Lawrence A; Hrovat J; Turner C; Cui JY; Gu H Ecotoxicol Environ Saf; 2020 Sep; 201():110849. PubMed ID: 32559690 [TBL] [Abstract][Full Text] [Related]
18. Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47). Ji C; Wu H; Wei L; Zhao J; Yu J Aquat Toxicol; 2013 Sep; 140-141():449-57. PubMed ID: 23938206 [TBL] [Abstract][Full Text] [Related]
19. Oxidative metabolism of BDE-47, BDE-99, and HBCDs by cat liver microsomes: Implications of cats as sentinel species to monitor human exposure to environmental pollutants. Zheng X; Erratico C; Luo X; Mai B; Covaci A Chemosphere; 2016 May; 151():30-6. PubMed ID: 26923239 [TBL] [Abstract][Full Text] [Related]
20. Uptake and biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in four marine microalgae species. Po BH; Ho KL; Lam MH; Giesy JP; Chiu JM Sci Rep; 2017 Mar; 7():44263. PubMed ID: 28287149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]