These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 29499785)
1. Rational selection of biphasic reaction systems for geranyl glucoside production by Escherichia coli whole-cell biocatalysts. Priebe X; Daschner M; Schwab W; Weuster-Botz D Enzyme Microb Technol; 2018 May; 112():79-87. PubMed ID: 29499785 [TBL] [Abstract][Full Text] [Related]
2. Byproduct-free geraniol glycosylation by whole-cell biotransformation with recombinant Escherichia coli. Priebe X; Hoang MD; Rüdiger J; Turgel M; Tröndle J; Schwab W; Weuster-Botz D Biotechnol Lett; 2021 Jan; 43(1):247-259. PubMed ID: 32860164 [TBL] [Abstract][Full Text] [Related]
3. Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase. Schmideder A; Priebe X; Rubenbauer M; Hoffmann T; Huang FC; Schwab W; Weuster-Botz D Bioprocess Biosyst Eng; 2016 Sep; 39(9):1409-14. PubMed ID: 27142377 [TBL] [Abstract][Full Text] [Related]
4. Downstream processing of enzymatically produced geranyl glucoside. de Roode BM; Oliehoek L; van der Padt A; Franssen MC; Boom RM Biotechnol Prog; 2001; 17(5):881-6. PubMed ID: 11587579 [TBL] [Abstract][Full Text] [Related]
5. Esterification of geraniol as a strategy for increasing product titre and specificity in engineered Escherichia coli. Chacón MG; Marriott A; Kendrick EG; Styles MQ; Leak DJ Microb Cell Fact; 2019 Jun; 18(1):105. PubMed ID: 31176369 [TBL] [Abstract][Full Text] [Related]
6. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture. Liu W; Xu X; Zhang R; Cheng T; Cao Y; Li X; Guo J; Liu H; Xian M Biotechnol Biofuels; 2016; 9():58. PubMed ID: 26973712 [TBL] [Abstract][Full Text] [Related]
7. Cytochrome P450-mediated N-demethylation of noscapine by whole-cell biotransformation: process limitations and strategies for optimisation. Richards L; Jarrold A; Bowser T; Stevens GW; Gras SL J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):449-464. PubMed ID: 32507955 [TBL] [Abstract][Full Text] [Related]
8. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli. Yang L; Jiang L; Li W; Yang Y; Zhang G; Luo Y J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1431-1441. PubMed ID: 28695386 [TBL] [Abstract][Full Text] [Related]
9. Potential Industrial Production of a Well-Soluble, Alkaline-Stable, and Anti-Inflammatory Isoflavone Glucoside from 8-Hydroxydaidzein Glucosylated by Recombinant Amylosucrase of Chang TS; Wang TY; Yang SY; Kao YH; Wu JY; Chiang CM Molecules; 2019 Jun; 24(12):. PubMed ID: 31208027 [TBL] [Abstract][Full Text] [Related]
10. Scaling-up the synthesis of myristate glucose ester catalyzed by a CALB-displaying Pichia pastoris whole-cell biocatalyst. Guo D; Jin Z; Xu Y; Wang P; Lin Y; Han S; Zheng S Enzyme Microb Technol; 2015; 75-76():30-6. PubMed ID: 26047913 [TBL] [Abstract][Full Text] [Related]
11. Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation. Leis D; Lauß B; Macher-Ambrosch R; Pfennig A; Nidetzky B; Kratzer R J Biotechnol; 2017 Sep; 257():110-117. PubMed ID: 27913217 [TBL] [Abstract][Full Text] [Related]
12. Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Gao P; Wu S; Praveen P; Loh KC; Li Z Appl Microbiol Biotechnol; 2017 Mar; 101(5):1857-1868. PubMed ID: 27830295 [TBL] [Abstract][Full Text] [Related]
14. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation. Zhou J; Wang C; Yoon SH; Jang HJ; Choi ES; Kim SW J Biotechnol; 2014 Jan; 169():42-50. PubMed ID: 24269531 [TBL] [Abstract][Full Text] [Related]
15. Mass transfer of terpenes through a silicone rubber membrane in a liquid-liquid contacting system. Boontawan A; Stuckey DC Biotechnol Prog; 2005; 21(6):1680-7. PubMed ID: 16321051 [TBL] [Abstract][Full Text] [Related]
16. Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Garikipati SV; McIver AM; Peeples TL Appl Environ Microbiol; 2009 Oct; 75(20):6545-52. PubMed ID: 19700554 [TBL] [Abstract][Full Text] [Related]
17. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. Werner SR; Morgan JA J Biotechnol; 2009 Jul; 142(3-4):233-41. PubMed ID: 19500622 [TBL] [Abstract][Full Text] [Related]
18. Water immiscible ionic liquids as solvents for whole cell biocatalysis. Pfruender H; Jones R; Weuster-Botz D J Biotechnol; 2006 Jun; 124(1):182-90. PubMed ID: 16413078 [TBL] [Abstract][Full Text] [Related]
19. Production of flavonol and flavone 6-C-glucosides by bioconversion in Escherichia coli expressing a C-glucosyltransferase from wasabi (Eutrema japonicum). Dorjjugder N; Hatano M; Taguchi G Biotechnol Lett; 2021 Sep; 43(9):1913-1919. PubMed ID: 34302563 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids. Dennewald D; Hortsch R; Weuster-Botz D J Biotechnol; 2012 Jan; 157(1):253-7. PubMed ID: 22079751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]