These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29499973)

  • 1. Radionuclide transfer to wildlife at a 'Reference site' in the Chernobyl Exclusion Zone and resultant radiation exposures.
    Beresford NA; Barnett CL; Gashchak S; Maksimenko A; Guliaichenko E; Wood MD; Izquierdo M
    J Environ Radioact; 2020 Jan; 211():105661. PubMed ID: 29499973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide DNA methylation changes in two Brassicaceae species sampled alongside a radiation gradient in Chernobyl and Fukushima.
    Horemans N; Nauts R; Vives I Batlle J; Van Hees M; Jacobs G; Voorspoels S; Gaschak S; Nanba K; Saenen E
    J Environ Radioact; 2018 Dec; 192():405-416. PubMed ID: 30055441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field effects studies in the Chernobyl Exclusion Zone: Lessons to be learnt.
    Beresford NA; Scott EM; Copplestone D
    J Environ Radioact; 2020 Jan; 211():105893. PubMed ID: 30718022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transfer of (137)Cs, Pu isotopes and (90)Sr to bird, bat and ground-dwelling small mammal species within the Chernobyl exclusion zone.
    Beresford NA; Gaschak S; Maksimenko A; Wood MD
    J Environ Radioact; 2016 Mar; 153():231-236. PubMed ID: 26808224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-liquid distribution coefficients (Kd-s) of geological deposits at the Chernobyl Nuclear Power Plant site with respect to Sr, Cs and Pu radionuclides: A short review.
    Bugai D; Smith J; Hoque MA
    Chemosphere; 2020 Mar; 242():125175. PubMed ID: 31675583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can stable elements (Cs and Sr) be used as proxies for the estimation of radionuclide soil-plant transfer factors?
    Guillén J; Beresford NA; Baigazinov Z; Salas A; Kunduzbaeva A
    Environ Pollut; 2022 Apr; 299():118897. PubMed ID: 35104562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting radionuclide transfer to wild animals: an application of a proposed environmental impact assessment framework to the Chernobyl exclusion zone.
    Beresford NA; Wright SM; Barnett CL; Wood MD; Gaschak S; Arkhipov A; Sazykina TG; Howard BJ
    Radiat Environ Biophys; 2005 Dec; 44(3):161-8. PubMed ID: 16237535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone.
    Beaugelin-Seiller K; Garnier-Laplace J; Della-Vedova C; Métivier JM; Lepage H; Mousseau TA; Møller AP
    Sci Rep; 2020 Aug; 10(1):14083. PubMed ID: 32826946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural attenuation processes control groundwater contamination in the Chernobyl exclusion zone: evidence from 35 years of radiological monitoring.
    Bugai D; Kireev S; Hoque MA; Kubko Y; Smith J
    Sci Rep; 2022 Oct; 12(1):18215. PubMed ID: 36309568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates.
    Garnier-Laplace J; Geras'kin S; Della-Vedova C; Beaugelin-Seiller K; Hinton TG; Real A; Oudalova A
    J Environ Radioact; 2013 Jul; 121():12-21. PubMed ID: 22336569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocaesium contamination and dose rate estimation of terrestrial and freshwater wildlife in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident.
    Fuma S; Ihara S; Takahashi H; Inaba O; Sato Y; Kubota Y; Watanabe Y; Kawaguchi I; Aono T; Soeda H; Yoshida S
    J Environ Radioact; 2017 May; 171():176-188. PubMed ID: 28262604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation ecology issues associated with murine rodents and shrews in the Chernobyl exclusion zone.
    Gaschak SP; Maklyuk YA; Maksimenko AM; Bondarkov MD; Jannik GT; Farfán EB
    Health Phys; 2011 Oct; 101(4):416-30. PubMed ID: 21878767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wildfires in the Chornobyl exclusion zone-Risks and consequences.
    Beresford NA; Barnett CL; Gashchak S; Kashparov V; Kirieiev SI; Levchuk S; Morozova V; Smith JT; Wood MD
    Integr Environ Assess Manag; 2021 Nov; 17(6):1141-1150. PubMed ID: 33835696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a fuel particle dissolution model with samples from the Red Forest within the Chernobyl exclusion zone.
    Kashparov V; Salbu B; Simonucci C; Levchuk S; Reinoso-Maset E; Lind OC; Maloshtan I; Protsak V; Courbet C; Nguyen H
    J Environ Radioact; 2020 Nov; 223-224():106387. PubMed ID: 32868094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: an international comparison of approaches.
    Beresford NA; Barnett CL; Brown JE; Cheng JJ; Copplestone D; Gaschak S; Hosseini A; Howard BJ; Kamboj S; Nedveckaite T; Olyslaegers G; Smith JT; Vives I Batlle J; Vives-Lynch S; Yu C
    J Radiol Prot; 2010 Jun; 30(2):341-73. PubMed ID: 20530868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of gut microbiota data in the 'eye of the beholder': A commentary and re-evaluation of data from 'Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone'.
    Watts PC; Mappes T; Tukalenko E; Mousseau TA; Boratyński Z; Møller AP; Lavrinienko A
    J Anim Ecol; 2022 Jul; 91(7):1535-1545. PubMed ID: 35694772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Europe-Wide Atmospheric Radionuclide Dispersion by Unprecedented Wildfires in the Chernobyl Exclusion Zone, April 2020.
    Masson O; Romanenko O; Saunier O; Kirieiev S; Protsak V; Laptev G; Voitsekhovych O; Durand V; Coppin F; Steinhauser G; de Vismes Ott A; Renaud P; Didier D; Boulet B; Morin M; Hýža M; Camps J; Belyaeva O; Dalheimer A; Eleftheriadis K; Gascó-Leonarte C; Ioannidou A; Isajenko K; Karhunen T; Kastlander J; Katzlberger C; Kierepko R; Knetsch GJ; Kónyi JK; Mietelski JW; Mirsch M; Møller B; Nikolić JK; Povinec PP; Rusconi R; Samsonov V; Sýkora I; Simion E; Steinmann P; Stoulos S; Suarez-Navarro JA; Wershofen H; Zapata-García D; Zorko B
    Environ Sci Technol; 2021 Oct; 55(20):13834-13848. PubMed ID: 34585576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering transport, deposition and impact of radionuclides released after the early spring 2020 wildfires in the Chernobyl Exclusion Zone.
    Evangeliou N; Eckhardt S
    Sci Rep; 2020 Jun; 10(1):10655. PubMed ID: 32606447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone.
    Lecomte-Pradines C; Bonzom JM; Della-Vedova C; Beaugelin-Seiller K; Villenave C; Gaschak S; Coppin F; Dubourg N; Maksimenko A; Adam-Guillermin C; Garnier-Laplace J
    Sci Total Environ; 2014 Aug; 490():161-70. PubMed ID: 24852614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current ionising radiation doses in the Chernobyl Exclusion Zone do not directly impact on soil biological activity.
    Beresford NA; Wood MD; Gashchak S; Barnett CL
    PLoS One; 2022; 17(2):e0263600. PubMed ID: 35196340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.