These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29500359)

  • 1. Atomic visualization of a non-equilibrium sodiation pathway in copper sulfide.
    Park JY; Kim SJ; Chang JH; Seo HK; Lee JY; Yuk JM
    Nat Commun; 2018 Mar; 9(1):922. PubMed ID: 29500359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Equilibrium Sodiation Pathway of CuSbS
    Park JY; Shim Y; Dao KP; Lee SG; Choe J; Lee HJ; Lee Y; Choi Y; Chang JH; Yoo SJ; Ahn CW; Chang W; Lee CW; Yuk JM
    ACS Nano; 2021 Nov; 15(11):17472-17479. PubMed ID: 34751557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Atomic-Scale Origins of Selective Ionic Transport Pathways and Sodium-Ion Storage Mechanism in Bi
    Cai R; Zhang W; Zhou J; Yang K; Sun L; Yang L; Ran L; Shao R; Fukuda T; Tan G; Liu H; Wan J; Zhang Q; Dong L
    Small Methods; 2022 Nov; 6(11):e2200995. PubMed ID: 36250994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulverization-Tolerance and Capacity Recovery of Copper Sulfide for High-Performance Sodium Storage.
    Park JY; Kim SJ; Yim K; Dae KS; Lee Y; Dao KP; Park JS; Jeong HB; Chang JH; Seo HK; Ahn CW; Yuk JM
    Adv Sci (Weinh); 2019 Jun; 6(12):1900264. PubMed ID: 31380167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS
    Xu Y; Wang K; Yao Z; Kang J; Lam D; Yang D; Ai W; Wolverton C; Hersam MC; Huang Y; Huang W; Dravid VP; Wu J
    Small; 2021 Jun; 17(24):e2100637. PubMed ID: 33982862
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Fu R; Pan J; Wang M; Min H; Dong H; Cai R; Sun Z; Xiong Y; Cui F; Lei SY; Chen S; Chen J; Sun L; Zhang Q; Xu F
    ACS Nano; 2023 Jul; 17(13):12483-12498. PubMed ID: 37326660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating the Stepwise Intercalation-Conversion Reaction of Layered Copper Sulfide toward Extremely High Capacity Zinc-Metal-Free Anodes for Rocking-Chair Zinc-Ion Batteries.
    Lv Z; Wang B; Ye M; Zhang Y; Yang Y; Li CC
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1126-1137. PubMed ID: 34933560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries.
    Zhang F; Zhu J; Zhang D; Schwingenschlögl U; Alshareef HN
    Nano Lett; 2017 Feb; 17(2):1302-1311. PubMed ID: 28098459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.
    Xu GL; Chen Z; Zhong GM; Liu Y; Yang Y; Ma T; Ren Y; Zuo X; Wu XH; Zhang X; Amine K
    Nano Lett; 2016 Jun; 16(6):3955-65. PubMed ID: 27222911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.
    Liu Y; Zhang A; Shen C; Liu Q; Cao X; Ma Y; Chen L; Lau C; Chen TC; Wei F; Zhou C
    ACS Nano; 2017 Jun; 11(6):5530-5537. PubMed ID: 28530803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries.
    Kalubarme RS; Lee JY; Park CJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17226-37. PubMed ID: 26186401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Lattice-Resolution Revelation of the Origins of Unexplored Anisotropic Sodiation Kinetics and Phase Transition in the Niobium Sulfide Anode.
    Fu R; Pan Y; Hua Y; Su L; Hou S; Xiong Y; Lei SY; Min H; Liu P; Sun L; Xu F
    ACS Nano; 2024 Jul; 18(29):19369-19380. PubMed ID: 38982621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress on Intercalation-Based Anode Materials for Low-Cost Sodium-Ion Batteries.
    Liu ZG; Du R; He XX; Wang JC; Qiao Y; Li L; Chou SL
    ChemSusChem; 2021 Sep; 14(18):3724-3743. PubMed ID: 34245489
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Wang X; Yao Z; Hwang S; Pan Y; Dong H; Fu M; Li N; Sun K; Gan H; Yao Y; Aspuru-Guzik A; Xu Q; Su D
    ACS Nano; 2019 Aug; 13(8):9421-9430. PubMed ID: 31386342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.
    Li X; He X; Shi C; Liu B; Zhang Y; Wu S; Zhu Z; Zhao J
    ChemSusChem; 2014 Dec; 7(12):3328-33. PubMed ID: 25354020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.
    Sun R; Wei Q; Li Q; Luo W; An Q; Sheng J; Wang D; Chen W; Mai L
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20902-8. PubMed ID: 26328897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.