These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29500440)
1. Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1. Presentato A; Piacenza E; Darbandi A; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ Sci Rep; 2018 Mar; 8(1):3923. PubMed ID: 29500440 [TBL] [Abstract][Full Text] [Related]
2. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ Microb Cell Fact; 2016 Dec; 15(1):204. PubMed ID: 27978836 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ N Biotechnol; 2018 Mar; 41():1-8. PubMed ID: 29174512 [TBL] [Abstract][Full Text] [Related]
4. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326 [TBL] [Abstract][Full Text] [Related]
5. Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa. Mohanty A; Kathawala MH; Zhang J; Chen WN; Loo JS; Kjelleberg S; Yang L; Cao B Biotechnol Bioeng; 2014 May; 111(5):858-65. PubMed ID: 24222554 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial and Antioxidant Activity of the Biologically Synthesized Tellurium Nanorods; A Preliminary Shakibaie M; Adeli-Sardou M; Mohammadi-Khorsand T; ZeydabadiNejad M; Amirafzali E; Amirpour-Rostami S; Ameri A; Forootanfar H Iran J Biotechnol; 2017; 15(4):268-276. PubMed ID: 29845079 [No Abstract] [Full Text] [Related]
7. Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions. Firrincieli A; Zannoni D; Donini E; Dostálová H; Rädisch R; Iommarini L; Turner RJ; Busche T; Pátek M; Cappelletti M Appl Environ Microbiol; 2022 Apr; 88(7):e0220921. PubMed ID: 35311511 [TBL] [Abstract][Full Text] [Related]
8. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods. Forootanfar H; Amirpour-Rostami S; Jafari M; Forootanfar A; Yousefizadeh Z; Shakibaie M Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():183-189. PubMed ID: 25686938 [TBL] [Abstract][Full Text] [Related]
9. Morphology-tunable tellurium nanomaterials produced by the tellurite-reducing bacterium Lysinibacillus sp. ZYM-1. Wang Z; Bu Y; Zhao Y; Zhang Z; Liu L; Zhou H Environ Sci Pollut Res Int; 2018 Jul; 25(21):20756-20768. PubMed ID: 29756181 [TBL] [Abstract][Full Text] [Related]
10. Acute and subacute toxicities of biogenic tellurium nanorods in mice. Najimi S; Shakibaie M; Jafari E; Ameri A; Rahimi N; Forootanfar H; Yazdanpanah M; Rahimi HR Regul Toxicol Pharmacol; 2017 Nov; 90():222-230. PubMed ID: 28923501 [TBL] [Abstract][Full Text] [Related]
11. Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Liu Z; Hu Z; Liang J; Li S; Yang Y; Peng S; Qian Y Langmuir; 2004 Jan; 20(1):214-8. PubMed ID: 15745023 [TBL] [Abstract][Full Text] [Related]
12. Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Kim DH; Kanaly RA; Hur HG Bioresour Technol; 2012 Dec; 125():127-31. PubMed ID: 23026324 [TBL] [Abstract][Full Text] [Related]
13. Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods. Xiong LH; Cui R; Zhang ZL; Tu JW; Shi YB; Pang DW Small; 2015 Oct; 11(40):5416-22. PubMed ID: 26313741 [TBL] [Abstract][Full Text] [Related]
14. Aerobic Growth of Presentato A; Cappelletti M; Sansone A; Ferreri C; Piacenza E; Demeter MA; Crognale S; Petruccioli M; Milazzo G; Fedi S; Steinbüchel A; Turner RJ; Zannoni D Front Microbiol; 2018; 9():672. PubMed ID: 29706937 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxicity investigations of biogenic tellurium nanorods towards PC12 cell line. Shakibaie M; Abharian A; Forootanfar H; Ameri A; Jafari M; Reza Rahimi H IET Nanobiotechnol; 2018 Dec; 12(8):1144-1149. PubMed ID: 30964028 [TBL] [Abstract][Full Text] [Related]
16. Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity. Vaigankar DC; Dubey SK; Mujawar SY; D'Costa A; S K S Ecotoxicol Environ Saf; 2018 Dec; 165():516-526. PubMed ID: 30223164 [TBL] [Abstract][Full Text] [Related]
17. Formation of nanoscale Te Shi LD; Du JJ; Wang LB; Han YL; Cao KF; Lai CY; Zhao HP Sci Total Environ; 2019 Mar; 655():1232-1239. PubMed ID: 30577115 [TBL] [Abstract][Full Text] [Related]
19. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Baesman SM; Bullen TD; Dewald J; Zhang D; Curran S; Islam FS; Beveridge TJ; Oremland RS Appl Environ Microbiol; 2007 Apr; 73(7):2135-43. PubMed ID: 17277198 [TBL] [Abstract][Full Text] [Related]
20. Bacterially Synthesized Tellurium Nanorods for Elimination of Advanced Malignant Tumor by Photothermal Immunotherapy. Yao Y; Li J; Li P; Wang D; Bao W; Xiao Y; Chen X; He S; Hu J; Yang X Small; 2022 Feb; 18(8):e2105716. PubMed ID: 34889048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]