These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29500533)

  • 1. DFT study of the mechanisms of nonenzymatic DNA repair by phytophenolic antioxidants.
    Zerrouki M; Benkaci-Ali F
    J Mol Model; 2018 Mar; 24(4):78. PubMed ID: 29500533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidative potential of ferulic acid phenoxyl radical.
    Amić A; Marković Z; Dimitrić Marković JM; Milenković D; Stepanić V
    Phytochemistry; 2020 Feb; 170():112218. PubMed ID: 31812108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Free Radical Scavenging, Antioxidative DNA Damage Activities and Phytochemical Components of Active Fractions from Lansium domesticum Corr. Fruit.
    Klungsupya P; Suthepakul N; Muangman T; Rerk-Am U; Thongdon-A J
    Nutrients; 2015 Aug; 7(8):6852-73. PubMed ID: 26287238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Antioxidant Assays.
    Prog Drug Res; 2016; 71():57-72. PubMed ID: 26939266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure of some thymol derivatives correlated with the radical scavenging activity: theoretical study.
    Javan AJ; Javan MJ
    Food Chem; 2014 Dec; 165():451-9. PubMed ID: 25038698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.
    Marković Z; Đorović J; Petrović ZD; Petrović VP; Simijonović D
    J Mol Model; 2015 Nov; 21(11):293. PubMed ID: 26508294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation reactions of thymol: a pulse radiolysis and theoretical study.
    Venu S; Naik DB; Sarkar SK; Aravind UK; Nijamudheen A; Aravindakumar CT
    J Phys Chem A; 2013 Jan; 117(2):291-9. PubMed ID: 23240914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sesamol inhibits UVB-induced ROS generation and subsequent oxidative damage in cultured human skin dermal fibroblasts.
    Ramachandran S; Rajendra Prasad N; Karthikeyan S
    Arch Dermatol Res; 2010 Dec; 302(10):733-44. PubMed ID: 20697726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of oxygen radicals in DNA damage and cancer incidence.
    Valko M; Izakovic M; Mazur M; Rhodes CJ; Telser J
    Mol Cell Biochem; 2004 Nov; 266(1-2):37-56. PubMed ID: 15646026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the interaction among dietary antioxidants and reactive oxygen species.
    Seifried HE; Anderson DE; Fisher EI; Milner JA
    J Nutr Biochem; 2007 Sep; 18(9):567-79. PubMed ID: 17360173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of antioxidant activity of extracts from unique Greek varieties of Leguminosae plants using in vitro assays.
    Spanou C; Stagos D; Tousias L; Angelis A; Aligiannis N; Skaltsounis AL; Kouretas D
    Anticancer Res; 2007; 27(5A):3403-10. PubMed ID: 17970087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an antidiabetic polyherbal formulation (ADPHF6) and assessment of its antioxidant activity against ROS-induced damage in pUC19 and human lymphocytes - an in vitro study.
    Shanmugasundaram D; Duraiswamy A; Viswanathan A; Sasikumar CS; Cherian SM; Cherian KM
    J Complement Integr Med; 2016 Sep; 13(3):267-274. PubMed ID: 27352446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper increases the damage to DNA and proteins caused by reactive oxygen species.
    Cervantes-Cervantes MP; Calderón-Salinas JV; Albores A; Muñoz-Sánchez JL
    Biol Trace Elem Res; 2005 Mar; 103(3):229-48. PubMed ID: 15784956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into the Antioxidant and Pro-oxidant Activities of Bromophenols from Marine Algae: A DFT Investigation.
    Boulebd H
    J Org Chem; 2024 Jun; 89(11):8168-8177. PubMed ID: 38810117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative Stress and Antioxidant Potential of One Hundred Medicinal Plants.
    Hassan W; Noreen H; Rehman S; Gul S; Kamal MA; Kamdem JP; Zaman B; da Rocha JBT
    Curr Top Med Chem; 2017; 17(12):1336-1370. PubMed ID: 28049396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice.
    Gudkov SV; Shtarkman IN; Smirnova VS; Chernikov AV; Bruskov VI
    Radiat Res; 2006 May; 165(5):538-45. PubMed ID: 16669708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant properties of pyrrolidine dithiocarbamate and its protection against Cr(VI)-induced DNA strand breakage.
    Shi X; Leonard SS; Wang S; Ding M
    Ann Clin Lab Sci; 2000 Apr; 30(2):209-16. PubMed ID: 10807167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phenolic chain-breaking antioxidants--their activity and mechanisms of action].
    Kowalewska E; Litwinienko G
    Postepy Biochem; 2010; 56(3):274-83. PubMed ID: 21117315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.