These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29500753)

  • 21. Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome.
    Yi Y; Xu S; Kovalevsky A; Zhang X; Liu D; Wan Q
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7757-7767. PubMed ID: 34553251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of Thermophilic Xylanase and Its Structural Analysis.
    Watanabe M; Fukada H; Ishikawa K
    Biochemistry; 2016 Aug; 55(31):4399-409. PubMed ID: 27410423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis.
    Han N; Miao H; Ding J; Li J; Mu Y; Zhou J; Huang Z
    Biotechnol Biofuels; 2017; 10():133. PubMed ID: 28546828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability.
    Qian C; Liu N; Yan X; Wang Q; Zhou Z; Wang Q
    Enzyme Microb Technol; 2015 Mar; 70():35-41. PubMed ID: 25659630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dockerin domains on Neocallimastix frontalis xylanases.
    Huang YH; Huang CT; Hseu RS
    FEMS Microbiol Lett; 2005 Feb; 243(2):455-60. PubMed ID: 15686849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR; Hossain M; Kapoor BS; Dasgupta S; B VPR; Aikat K; Mukhopadhyay SS
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparative Study to Decipher the Structural and Dynamics Determinants Underlying the Activity and Thermal Stability of GH-11 Xylanases.
    Vucinic J; Novikov G; Montanier CY; Dumon C; Schiex T; Barbe S
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.
    Matsuzawa T; Kaneko S; Yaoi K
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A highly active GH11 xylanase from Penicillium sp. L1 with potential applications in xylo-oligosaccharide production].
    Wang X; Liu W; Xie X; Yao B; Luo H
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):68-77. PubMed ID: 29380572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescence-assisted carbohydrate electrophoresis.
    Gong W; Zhang H; Tian L; Liu S; Wu X; Li F; Wang L
    Electrophoresis; 2016 Jul; 37(12):1640-50. PubMed ID: 27060349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GH-10 and GH-11 Endo-1,4-β-xylanase enzymes from Kitasatospora sp. produce xylose and xylooligosaccharides from sugarcane bagasse with no xylose inhibition.
    Rahmani N; Kahar P; Lisdiyanti P; Lee J; Yopi ; Prasetya B; Ogino C; Kondo A
    Bioresour Technol; 2019 Jan; 272():315-325. PubMed ID: 30384206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from
    Hu H; Chen K; Li L; Long L; Ding S
    J Microbiol Biotechnol; 2017 Apr; 27(4):775-784. PubMed ID: 28173691
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving the thermostability of a GH11 xylanase by directed evolution and rational design guided by B-factor analysis.
    Xing H; Zou G; Liu C; Chai S; Yan X; Li X; Liu R; Yang Y; Zhou Z
    Enzyme Microb Technol; 2021 Feb; 143():109720. PubMed ID: 33375980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design.
    Li G; Zhou X; Li Z; Liu Y; Liu D; Miao Y; Wan Q; Zhang R
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4561-4576. PubMed ID: 34014347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis.
    Takita T; Nakatani K; Katano Y; Suzuki M; Kojima K; Saka N; Mikami B; Yatsunami R; Nakamura S; Yasukawa K
    Enzyme Microb Technol; 2019 Nov; 130():109363. PubMed ID: 31421720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase.
    Teng C; Yan Q; Jiang Z; Fan G; Shi B
    Bioresour Technol; 2010 Oct; 101(19):7679-82. PubMed ID: 20554201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase.
    Xiong K; Hou J; Jiang Y; Li X; Teng C; Li Q; Fan G; Yang R; Zhang C
    BMC Biotechnol; 2019 Jul; 19(1):51. PubMed ID: 31345213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives.
    Kumar V; Marín-Navarro J; Shukla P
    World J Microbiol Biotechnol; 2016 Feb; 32(2):34. PubMed ID: 26754672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme.
    Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ
    Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.