These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 29500816)
1. A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection. Jin H; Li Z; Tong R; Lin L Med Phys; 2018 May; 45(5):2097-2107. PubMed ID: 29500816 [TBL] [Abstract][Full Text] [Related]
2. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. Dou Q; Chen H; Yu L; Qin J; Heng PA IEEE Trans Biomed Eng; 2017 Jul; 64(7):1558-1567. PubMed ID: 28113302 [TBL] [Abstract][Full Text] [Related]
3. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571 [TBL] [Abstract][Full Text] [Related]
4. Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection. Eun H; Kim D; Jung C; Kim C Comput Methods Programs Biomed; 2018 Oct; 165():215-224. PubMed ID: 30337076 [TBL] [Abstract][Full Text] [Related]
5. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
6. An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection. Yuan H; Fan Z; Wu Y; Cheng J Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2269-2277. PubMed ID: 34449037 [TBL] [Abstract][Full Text] [Related]
7. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs. Han G; Liu X; Zheng G; Wang M; Huang S Med Biol Eng Comput; 2018 Dec; 56(12):2201-2212. PubMed ID: 29873026 [TBL] [Abstract][Full Text] [Related]
8. 3D multi-scale deep convolutional neural networks for pulmonary nodule detection. Peng H; Sun H; Guo Y PLoS One; 2021; 16(1):e0244406. PubMed ID: 33411741 [TBL] [Abstract][Full Text] [Related]
9. Recurrent attention network for false positive reduction in the detection of pulmonary nodules in thoracic CT scans. Farhangi MM; Petrick N; Sahiner B; Frigui H; Amini AA; Pezeshk A Med Phys; 2020 Jun; 47(5):2150-2160. PubMed ID: 32030769 [TBL] [Abstract][Full Text] [Related]
10. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Gong L; Jiang S; Yang Z; Zhang G; Wang L Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1969-1979. PubMed ID: 31028657 [TBL] [Abstract][Full Text] [Related]
11. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Cascio D; Magro R; Fauci F; Iacomi M; Raso G Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972 [TBL] [Abstract][Full Text] [Related]
12. Multi-level 3D Densenets for False-positive Reduction in Lung Nodule Detection Based on Chest Computed Tomography. Lu X; Gu Y; Yang L; Zhang B; Zhao Y; Yu D; Zhao J; Gao L; Zhou T; Liu Y; Zhang W Curr Med Imaging; 2020; 16(8):1004-1021. PubMed ID: 33081662 [TBL] [Abstract][Full Text] [Related]
13. Pulmonary nodule detection using hybrid two-stage 3D CNNs. Tan M; Wu F; Yang B; Ma J; Kong D; Chen Z; Long D Med Phys; 2020 Aug; 47(8):3376-3388. PubMed ID: 32239521 [TBL] [Abstract][Full Text] [Related]
14. An Embedded Multi-branch 3D Convolution Neural Network for False Positive Reduction in Lung Nodule Detection. Zuo W; Zhou F; He Y J Digit Imaging; 2020 Aug; 33(4):846-857. PubMed ID: 32095944 [TBL] [Abstract][Full Text] [Related]
15. Pulmonary nodule detection in CT scans with equivariant CNNs. Winkels M; Cohen TS Med Image Anal; 2019 Jul; 55():15-26. PubMed ID: 31003034 [TBL] [Abstract][Full Text] [Related]
16. The effects of physics-based data augmentation on the generalizability of deep neural networks: Demonstration on nodule false-positive reduction. Omigbodun AO; Noo F; McNitt-Gray M; Hsu W; Hsieh SS Med Phys; 2019 Oct; 46(10):4563-4574. PubMed ID: 31396974 [TBL] [Abstract][Full Text] [Related]
17. Multi-scale gradual integration CNN for false positive reduction in pulmonary nodule detection. Kim BC; Yoon JS; Choi JS; Suk HI Neural Netw; 2019 Jul; 115():1-10. PubMed ID: 30909118 [TBL] [Abstract][Full Text] [Related]
18. MD-NDNet: a multi-dimensional convolutional neural network for false-positive reduction in pulmonary nodule detection. Wu Z; Ge R; Shi G; Zhang L; Chen Y; Luo L; Cao Y; Yu H Phys Med Biol; 2020 Dec; 65(23):235053. PubMed ID: 32698172 [TBL] [Abstract][Full Text] [Related]
19. An improved faster R-CNN algorithm for assisted detection of lung nodules. Xu J; Ren H; Cai S; Zhang X Comput Biol Med; 2023 Feb; 153():106470. PubMed ID: 36587571 [TBL] [Abstract][Full Text] [Related]
20. Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis. Gong J; Liu JY; Wang LJ; Sun XW; Zheng B; Nie SD Phys Med; 2018 Feb; 46():124-133. PubMed ID: 29519398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]