These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29500972)

  • 1. Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery.
    Crutchik D; Frison N; Eusebi AL; Fatone F
    Water Res; 2018 Jun; 136():112-119. PubMed ID: 29500972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale.
    Da Ros C; Conca V; Eusebi AL; Frison N; Fatone F
    Water Res; 2020 May; 174():115633. PubMed ID: 32109752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation.
    Tong J; Chen Y
    Environ Sci Technol; 2007 Oct; 41(20):7126-30. PubMed ID: 17993158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.
    Li RH; Li XY
    Bioresour Technol; 2017 Dec; 245(Pt A):615-624. PubMed ID: 28910649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants.
    Longo S; Katsou E; Malamis S; Frison N; Renzi D; Fatone F
    Bioresour Technol; 2015 Jan; 175():436-44. PubMed ID: 25459853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal.
    Zhang C; Chen Y
    Environ Sci Technol; 2009 Aug; 43(16):6164-70. PubMed ID: 19746708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement.
    Zhang D; Fu X; Jia S; Dai L; Wu B; Dai X
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1492-504. PubMed ID: 26374544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology.
    Zhang P; Chen Y; Zhou Q; Zheng X; Zhu X; Zhao Y
    Environ Sci Technol; 2010 Dec; 44(24):9343-8. PubMed ID: 21105739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge.
    Dong B; Gao P; Zhang D; Chen Y; Dai L; Dai X
    J Environ Sci (China); 2016 May; 43():159-168. PubMed ID: 27155421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated two-phase acidogenic-methanogenic treatment of municipal sludge with thermal hydrolysis.
    Hosseini Koupaie E; Bazyar Lakeh AA; Azizi A; Hafez H; Elbeshbishy E
    Waste Manag; 2022 May; 144():173-181. PubMed ID: 35367705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].
    Zhang C; Chen YG
    Huan Jing Ke Xue; 2013 Jul; 34(7):2741-7. PubMed ID: 24028007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.
    Yang X; Wan C; Lee DJ; Du M; Pan X; Wan F
    Bioresour Technol; 2014 Sep; 168():173-9. PubMed ID: 24630368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).
    Yuan Y; Liu J; Ma B; Liu Y; Wang B; Peng Y
    Bioresour Technol; 2016 Dec; 222():326-334. PubMed ID: 27728835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing volatile fatty acid production from sewage sludge in batch fermentation tests.
    Mineo A; Di Leto Y; Cosenza A; Capri FC; Gallo G; Alduina R; Ni BJ; Mannina G
    Chemosphere; 2024 Feb; 349():140859. PubMed ID: 38048828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-chain fatty acids resource recovery potential from algal sludge via anaerobic fermentation under various pH values.
    Li L; Li Z; Song K; Gu Y; Gao X; Zhao X
    Chemosphere; 2021 Jul; 275():129954. PubMed ID: 33631402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.
    Jiang S; Chen Y; Zhou Q; Gu G
    Water Res; 2007 Jul; 41(14):3112-20. PubMed ID: 17499838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.