BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29500985)

  • 1. Studies in the extensively automatic construction of large odds-based inference networks from structured data. Examples from medical, bioinformatics, and health insurance claims data.
    Robson B; Boray S
    Comput Biol Med; 2018 Apr; 95():147-166. PubMed ID: 29500985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of a web based universal exchange and inference language for medicine: Sparse data, probabilities and inference in data mining of clinical data repositories.
    Robson B; Boray S
    Comput Biol Med; 2015 Nov; 66():82-102. PubMed ID: 26386548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies in the use of data mining, prediction algorithms, and a universal exchange and inference language in the analysis of socioeconomic health data.
    Robson B; Boray S
    Comput Biol Med; 2019 Sep; 112():103369. PubMed ID: 31377681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suggestions for a Web based universal exchange and inference language for medicine.
    Robson B; Caruso TP; Balis UG
    Comput Biol Med; 2013 Dec; 43(12):2297-310. PubMed ID: 24211018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data mining in clinical big data: the frequently used databases, steps, and methodological models.
    Wu WT; Li YJ; Feng AZ; Li L; Huang T; Xu AD; Lyu J
    Mil Med Res; 2021 Aug; 8(1):44. PubMed ID: 34380547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets.
    Robson B
    Comput Biol Med; 2014 Aug; 51():183-97. PubMed ID: 24954566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of the Quantum Universal Exchange Language to precision medicine and drug lead discovery. Preliminary example studies using the mitochondrial genome.
    Robson B
    Comput Biol Med; 2020 Feb; 117():103621. PubMed ID: 32072972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial algorithm for counting small induced graphs and orbits.
    Hočevar T; Demšar J
    PLoS One; 2017; 12(2):e0171428. PubMed ID: 28182743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-mining to build a knowledge representation store for clinical decision support. Studies on curation and validation based on machine performance in multiple choice medical licensing examinations.
    Robson B; Boray S
    Comput Biol Med; 2016 Jun; 73():71-93. PubMed ID: 27089305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survey of Natural Language Processing Techniques in Bioinformatics.
    Zeng Z; Shi H; Wu Y; Hong Z
    Comput Math Methods Med; 2015; 2015():674296. PubMed ID: 26525745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches.
    Alonso-Betanzos A; Bolón-Canedo V
    Adv Exp Med Biol; 2018; 1065():607-626. PubMed ID: 30051410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introducing Machine Learning Concepts with WEKA.
    Smith TC; Frank E
    Methods Mol Biol; 2016; 1418():353-78. PubMed ID: 27008023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting medical prescriptions suspected of fraud using an unsupervised data mining algorithm.
    Haddad Soleymani M; Yaseri M; Farzadfar F; Mohammadpour A; Sharifi F; Kabir MJ
    Daru; 2018 Dec; 26(2):209-214. PubMed ID: 30460618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting biomedical events from pairs of text entities.
    Liu X; Bordes A; Grandvalet Y
    BMC Bioinformatics; 2015; 16 Suppl 10(Suppl 10):S8. PubMed ID: 26201478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives on making big data analytics work for oncology.
    El Naqa I
    Methods; 2016 Dec; 111():32-44. PubMed ID: 27586524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using data mining to detect health care fraud and abuse: a review of literature.
    Joudaki H; Rashidian A; Minaei-Bidgoli B; Mahmoodi M; Geraili B; Nasiri M; Arab M
    Glob J Health Sci; 2014 Aug; 7(1):194-202. PubMed ID: 25560347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using data mining to find fraud in HCFA health care claims.
    Sokol L; Garcia B; Rodriguez J; West M; Johnson K
    Top Health Inf Manage; 2001 Aug; 22(1):1-13. PubMed ID: 11680273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Computational Inference of Multi-protein Assemblies from Biochemical Co-purification Data.
    Goebels F; Hu L; Bader G; Emili A
    Methods Mol Biol; 2018; 1764():391-399. PubMed ID: 29605929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing health insurance claims on different timescales to predict days in hospital.
    Xie Y; Schreier G; Hoy M; Liu Y; Neubauer S; Chang DC; Redmond SJ; Lovell NH
    J Biomed Inform; 2016 Apr; 60():187-96. PubMed ID: 26827621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic identification and classification of noun argument structures in biomedical literature.
    Ozyurt IB
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1639-48. PubMed ID: 22868678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.