BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29501032)

  • 1. The effect of zerovalent iron on the microbial degradation of hexabromocyclododecane.
    Peng YH; Chen YJ; Chang M; Shih YH
    Chemosphere; 2018 Jun; 200():419-426. PubMed ID: 29501032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transformation of hexabromocyclododecane using zerovalent iron nanoparticle aggregates.
    Tso CP; Shih YH
    J Hazard Mater; 2014 Jul; 277():76-83. PubMed ID: 24962054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of hexabromocyclododecane by Rhodopseudomonas palustris YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan.
    Chang TH; Wang R; Peng YH; Chou TH; Li YJ; Shih YH
    Chemosphere; 2020 May; 246():125621. PubMed ID: 31896015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and sequential degradation of polybrominated diphenyl ethers with zerovalent iron.
    Peng YH; Chen MK; Shih YH
    J Hazard Mater; 2013 Sep; 260():844-50. PubMed ID: 23856315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient hexabromocyclododecane-biodegrading microorganisms isolated in Taiwan.
    Chou TH; Li YJ; Ko CF; Wu TY; Shih YH
    Chemosphere; 2021 May; 271():129544. PubMed ID: 33445030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of hexabromocyclododecane by carboxymethyl cellulose stabilized Fe and Ni/Fe bimetallic nanoparticles: The particle stability and reactivity in water.
    Tso CP; Kuo DTF; Shih YH
    Chemosphere; 2020 Jul; 250():126155. PubMed ID: 32105853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether.
    Shih YH; Chou HL; Peng YH; Chang CY
    Bioresour Technol; 2012 Mar; 108():14-20. PubMed ID: 22265595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic degradation and the effect of hexabromocyclododecane by soil microbial communities in Taiwan.
    Li YJ; Li MH; Shih YH
    Environ Int; 2020 Dec; 145():106128. PubMed ID: 33011547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levels and distribution of hexabromocyclododecane and its lower brominated derivative in Japanese riverine environment.
    Oh JK; Kotani K; Managaki S; Masunaga S
    Chemosphere; 2014 Aug; 109():157-63. PubMed ID: 24582359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor.
    Peng X; Huang X; Jing F; Zhang Z; Wei D; Jia X
    Bioresour Technol; 2015 Jun; 185():218-24. PubMed ID: 25770469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment.
    Velimirovic M; Simons Q; Bastiaens L
    Chemosphere; 2015 Sep; 134():338-45. PubMed ID: 25973858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of hexabromocyclododecane (HBCD) by nanoscale zero-valent aluminum (nZVAl).
    Jiang Y; Yang S; Liu J; Ren T; Zhang Y; Sun X
    Chemosphere; 2020 Apr; 244():125536. PubMed ID: 31816547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-metabolic degradation and metabolite detection of hexabromocyclododecane by Shewanella oneidensis MR-1.
    Shah SB; Wang Y; Anwar N; Abbas SZ; Khan KA; Wang SM; Ullah MW
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):25. PubMed ID: 38157005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient degradation of hexabromocyclododecane using montmorillonite supported nano-zero-valent iron and Citrobacter sp. Y3.
    Li T; Lu Y; Liu L; He Y; Huang J; Peng X
    J Hazard Mater; 2023 Sep; 457():131739. PubMed ID: 37269562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments.
    Davis JW; Gonsior S; Marty G; Ariano J
    Water Res; 2005 Mar; 39(6):1075-84. PubMed ID: 15766961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids.
    Le TT; Yoon H; Son MH; Kang YG; Chang YS
    Sci Total Environ; 2019 Nov; 689():444-450. PubMed ID: 31279191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil.
    Zhang K; Huang J; Wang H; Liu K; Yu G; Deng S; Wang B
    Chemosphere; 2014 Dec; 116():40-5. PubMed ID: 24613442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.
    Velimirovic M; Larsson PO; Simons Q; Bastiaens L
    Chemosphere; 2013 Nov; 93(9):2040-5. PubMed ID: 23962383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol.
    Ukisu Y
    Chemosphere; 2017 Jul; 179():179-184. PubMed ID: 28365503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant gamma-hexabromocyclododecane.
    Yamada T; Takahama Y; Yamada Y
    Biosci Biotechnol Biochem; 2009 Jul; 73(7):1674-8. PubMed ID: 19584526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.