BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29501189)

  • 1. Analysis of bacterial FAMEs using gas chromatography - vacuum ultraviolet spectroscopy for the identification and discrimination of bacteria.
    Santos IC; Smuts J; Choi WS; Kim Y; Kim SB; Schug KA
    Talanta; 2018 May; 182():536-543. PubMed ID: 29501189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L.
    Halda-Alija L
    Can J Microbiol; 2003 Dec; 49(12):781-7. PubMed ID: 15162203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.
    Fan H; Smuts J; Bai L; Walsh P; Armstrong DW; Schug KA
    Food Chem; 2016 Mar; 194():265-71. PubMed ID: 26471553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-volume injection gas chromatography-vacuum ultraviolet spectroscopy for the qualitative and quantitative analysis of fatty acids in blood plasma.
    Santos IC; Smuts J; Crawford ML; Grant RP; Schug KA
    Anal Chim Acta; 2019 Apr; 1053():169-177. PubMed ID: 30712563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli.
    Whittaker P; Fry FS; Curtis SK; Al-Khaldi SF; Mossoba MM; Yurawecz MP; Dunkel VC
    J Agric Food Chem; 2005 May; 53(9):3735-42. PubMed ID: 15853428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
    Yamamoto K; Kinoshita A; Shibahara A
    J Chromatogr A; 2008 Feb; 1182(1):132-5. PubMed ID: 18207151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures.
    Zoccali M; Schug KA; Walsh P; Smuts J; Mondello L
    J Chromatogr A; 2017 May; 1497():135-143. PubMed ID: 28381363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the use of fatty acid profiles to identify Francisella tularensis.
    Whittaker P; Day JB; Curtis SK; Fry FS
    J AOAC Int; 2007; 90(2):465-9. PubMed ID: 17474518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enterobacteriaceae and pseudomonadaceae on the dorsum of the human tongue.
    Conti S; dos Santos SS; Koga-Ito CY; Jorge AO
    J Appl Oral Sci; 2009; 17(5):375-80. PubMed ID: 19936511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Fatty Acids in Bacillus cereus.
    Ginies C; Brillard J; Nguyen-The C
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters.
    Lu Y; Harrington PB
    Anal Bioanal Chem; 2010 Aug; 397(7):2959-66. PubMed ID: 20521142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical approach for estimating the equivalent chain length of fatty acid methyl esters in multistep temperature-programmed gas chromatography.
    Lomsugarit S; Katsuwon J; Jeyashoke N; Krisnangkura K
    J Chromatogr Sci; 2001 Nov; 39(11):468-72. PubMed ID: 11718307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester.
    Pojjanapornpun S; Aryusuk K; Lilitchan S; Krisnangkura K
    Anal Bioanal Chem; 2017 Apr; 409(11):2777-2789. PubMed ID: 28168549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct mass spectrometric analysis of in situ thermally hydrolyzed and methylated lipids from whole bacterial cells.
    Basile F; Beverly MB; Abbas-Hawks C; Mowry CD; Voorhees KJ; Hadfield TL
    Anal Chem; 1998 Apr; 70(8):1555-62. PubMed ID: 9569765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.
    E G; Drujon T; Correia I; Ploux O; Guianvarc'h D
    Biochimie; 2013 Dec; 95(12):2336-44. PubMed ID: 23954860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas chromatography and trimethylsulfonium hydroxide.
    Müller KD; Husmann H; Nalik HP
    Zentralbl Bakteriol; 1990 Nov; 274(2):174-82. PubMed ID: 2128179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical method for the prediction of retention times of fatty acid methyl esters in temperature-programmed capillary gas chromatography.
    Torres AG; Trugo NM; Trugo LC
    J Agric Food Chem; 2002 Jul; 50(15):4156-63. PubMed ID: 12105939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid composition of human erythrocyte membranes by capillary gas chromatography-mass spectrometry.
    Alexander LR; Justice JB; Madden J
    J Chromatogr; 1985 Jul; 342(1):1-12. PubMed ID: 4044739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.
    Quezada M; Buitrón G; Moreno-Andrade I; Moreno G; López-Marín LM
    FEMS Microbiol Lett; 2007 Jan; 266(1):75-82. PubMed ID: 17092295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acids of Myxococcus xanthus.
    Ware JC; Dworkin M
    J Bacteriol; 1973 Jul; 115(1):253-61. PubMed ID: 4197903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.