BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 29501189)

  • 21. Diversity of Aeromonas sp. in Flemish drinking water production plants as determined by gas-liquid chromatographic analysis of cellular fatty acid methyl esters (FAMEs).
    Huys G; Kersters I; Vancanneyt M; Coopman R; Janssen P; Kersters K
    J Appl Bacteriol; 1995 Apr; 78(4):445-55. PubMed ID: 7744729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of Enterobacter sakazakii from closely related Enterobacter and Citrobacter species using fatty acid profiles.
    Whittaker P; Keys CE; Brown EW; Fry FS
    J Agric Food Chem; 2007 May; 55(11):4617-23. PubMed ID: 17472390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the use of fatty acid profiles to differentiate human pathogenic and nonpathogenic Listeria species.
    Whittaker P
    J AOAC Int; 2012; 95(5):1457-9. PubMed ID: 23175980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification of fatty acid methyl esters by high-performance liquid chromatography.
    Nightingale ZD; Blumberg JB; Handelman GJ
    J Chromatogr B Biomed Sci Appl; 1999 Sep; 732(2):495-500. PubMed ID: 10517372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of lipid fatty acids in whole-cell microorganisms using in situ supercritical fluid derivatization/extraction and gas chromatography/mass spectrometry.
    Gharaibeh AA; Voorhees KJ
    Anal Chem; 1996 Sep; 68(17):2805-10. PubMed ID: 8794917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of foodborne bacteria by infrared spectroscopy using cellular fatty acid methyl esters.
    Whittaker P; Mossoba MM; Al-Khaldi S; Fry FS; Dunkel VC; Tall BD; Yurawecz MP
    J Microbiol Methods; 2003 Dec; 55(3):709-16. PubMed ID: 14607413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of fatty acid methyl esters by a gas--liquid chromatography--chemical ionization mass spectrometry computer system.
    Murata T
    J Lipid Res; 1978 Feb; 19(2):166-71. PubMed ID: 632679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode.
    David F; Tienpont B; Sandra P
    J Sep Sci; 2008 Oct; 31(19):3395-403. PubMed ID: 18792008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gas chromatographic analysis of fatty acid methyl esters.
    Eder K
    J Chromatogr B Biomed Appl; 1995 Sep; 671(1-2):113-31. PubMed ID: 8520689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of fatty acid methyl esters by GC-online hydrogenation × GC.
    Delmonte P; Fardin-Kia AR; Rader JI
    Anal Chem; 2013 Feb; 85(3):1517-24. PubMed ID: 23256663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct determination of flavor relevant and further branched-chain fatty acids from sheep subcutaneous adipose tissue by gas chromatography with mass spectrometry.
    Kaffarnik S; Preuß S; Vetter W
    J Chromatogr A; 2014 Jul; 1350():92-101. PubMed ID: 24881496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of six species in the new genus Cronobacter (Enterobacter sakazakii) from culture using gas chromatographic analysis of fatty acid methyl esters.
    Whittaker P
    J AOAC Int; 2011; 94(5):1581-4. PubMed ID: 22165024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.
    Thurnhofer S; Vetter W
    J Agric Food Chem; 2006 May; 54(9):3209-14. PubMed ID: 16637674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green chromatography determination of fatty acid methyl esters in biodiesel.
    Mayo CM; Alayón AB; García Rodríguez MT; Jiménez Abizanda AI; Moreno FJ
    Environ Technol; 2015; 36(13-16):1933-42. PubMed ID: 25666201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of bacteria stress responses to contaminants derived from shale energy extraction.
    Santos IC; Chaumette A; Smuts J; Hildenbrand ZL; Schug KA
    Environ Sci Process Impacts; 2019 Feb; 21(2):269-278. PubMed ID: 30444232
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Long-Chain Unsaturated Fatty Acids by Ionic Liquid Gas Chromatography.
    Weatherly CA; Zhang Y; Smuts JP; Fan H; Xu C; Schug KA; Lang JC; Armstrong DW
    J Agric Food Chem; 2016 Feb; 64(6):1422-32. PubMed ID: 26852774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of GC stationary phases for the separation of fatty acid methyl esters in biodiesel fuels.
    Goding JC; Ragon DY; O'Connor JB; Boehm SJ; Hupp AM
    Anal Bioanal Chem; 2013 Jul; 405(18):6087-94. PubMed ID: 23728727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentiation of bacteria using fatty acid profiles from gas chromatography-tandem mass spectrometry.
    Li Y; Wu S; Wang L; Li Y; Shi F; Wang X
    J Sci Food Agric; 2010 Jun; 90(8):1380-3. PubMed ID: 20474059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the periodontal microflora by the fatty acid profile of the broth-grown microbial population.
    Müller KD; Weischer T; Schettler D; Ansorg R
    Zentralbl Bakteriol; 1998 Dec; 288(4):441-9. PubMed ID: 9987181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L.
    Chandrasekaran M; Senthilkumar A; Venkatesalu V
    Eur Rev Med Pharmacol Sci; 2011 Jul; 15(7):775-80. PubMed ID: 21780546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.