BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29501196)

  • 1. Mass spectrometry investigation of DNA adduct formation from bisphenol A quinone metabolite and MCF-7 cell DNA.
    Zhao H; Wei J; Xiang L; Cai Z
    Talanta; 2018 May; 182():583-589. PubMed ID: 29501196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of bisphenol A 3,4-quinone metabolite with glutathione and ribonucleosides/deoxyribonucleosides in vitro.
    Wu Q; Fang J; Li S; Wei J; Yang Z; Zhao H; Zhao C; Cai Z
    J Hazard Mater; 2017 Feb; 323(Pt A):195-202. PubMed ID: 26971050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction of bisphenol A 3,4-quinone with DNA.
    Edmonds JS; Nomachi M; Terasaki M; Morita M; Skelton BW; White AH
    Biochem Biophys Res Commun; 2004 Jun; 319(2):556-61. PubMed ID: 15178442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo DNA adduct formation by bisphenol A.
    Atkinson A; Roy D
    Environ Mol Mutagen; 1995; 26(1):60-6. PubMed ID: 7641708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and liquid chromatography/tandem mass spectrometric characterization of the adducts of bisphenol A o-quinone with glutathione and nucleotide monophosphates.
    Qiu SX; Yang RZ; Gross ML
    Chem Res Toxicol; 2004 Aug; 17(8):1038-46. PubMed ID: 15310235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study of the reactivity of bisphenol A-3,4-quinone with deoxyadenosine and glutathione.
    Kolšek K; Sollner Dolenc M; Mavri J
    Chem Res Toxicol; 2013 Jan; 26(1):106-11. PubMed ID: 23198967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospray ionization tandem mass spectrometric characterization of DNA adducts formed by bromobenzoquinones.
    Lai Y; Lu M; Lin S; Wu H; Cai Z
    Rapid Commun Mass Spectrom; 2011 Oct; 25(19):2943-50. PubMed ID: 21913273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of an LC-MS/MS method for simultaneous quantitative analysis of free and conjugated bisphenol A in human urine.
    Battal D; Cok I; Unlusayin I; Tunctan B
    Biomed Chromatogr; 2014 May; 28(5):686-93. PubMed ID: 24343900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
    Wang J; Yamada Y; Notake A; Todoroki Y; Tokumoto T; Dong J; Thomas P; Hirai H; Kawagishi H
    Chemosphere; 2014 Aug; 109():128-33. PubMed ID: 24582362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of bisphenol A in isolated rat hepatocytes and oestrogenic activity of a hydroxylated metabolite in MCF-7 human breast cancer cells.
    Nakagawa Y; Suzuki T
    Xenobiotica; 2001 Mar; 31(3):113-23. PubMed ID: 11465389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tautomerization in gas-phase ion chemistry of isomeric C-8 deoxyguanosine adducts from phenol-induced DNA damage.
    Sagoo S; Beach DG; Manderville RA; Gabryelski W
    J Mass Spectrom; 2011 Jan; 46(1):41-9. PubMed ID: 21184435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Identification and Kinetic Analysis of the in Vitro Products Formed by Reaction of Bisphenol A-3,4-quinone with N-Acetylcysteine and Glutathione.
    Stack DE; Conrad JA; Mahmud B
    Chem Res Toxicol; 2018 Feb; 31(2):81-87. PubMed ID: 29281792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro profiling of toxicity and endocrine disrupting effects of bisphenol analogues by employing MCF-7 cells and two-hybrid yeast bioassay.
    Lei B; Xu J; Peng W; Wen Y; Zeng X; Yu Z; Wang Y; Chen T
    Environ Toxicol; 2017 Jan; 32(1):278-289. PubMed ID: 26916392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of bisphenol A-3,4-quinone with DNA. A quantum chemical study.
    Kolšek K; Mavri J; Sollner Dolenc M
    Toxicol In Vitro; 2012 Feb; 26(1):102-6. PubMed ID: 22120823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are structural analogues to bisphenol a safe alternatives?
    Rosenmai AK; Dybdahl M; Pedersen M; Alice van Vugt-Lussenburg BM; Wedebye EB; Taxvig C; Vinggaard AM
    Toxicol Sci; 2014 May; 139(1):35-47. PubMed ID: 24563381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of bisphenol A-glucuronide in human urine using ultrahigh-pressure liquid chromatography/tandem mass spectrometry.
    Hauck ZZ; Huang K; Li G; van Breemen RB
    Rapid Commun Mass Spectrom; 2016 Feb; 30(3):400-6. PubMed ID: 26754133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the DNA damaging potential of cannabis cigarette smoke by the determination of acetaldehyde derived N2-ethyl-2'-deoxyguanosine adducts.
    Singh R; Sandhu J; Kaur B; Juren T; Steward WP; Segerbäck D; Farmer PB
    Chem Res Toxicol; 2009 Jun; 22(6):1181-8. PubMed ID: 19449825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping DNA adducts of mitomycin C and decarbamoyl mitomycin C in cell lines using liquid chromatography/ electrospray tandem mass spectrometry.
    Paz MM; Ladwa S; Champeil E; Liu Y; Rockwell S; Boamah EK; Bargonetti J; Callahan J; Roach J; Tomasz M
    Chem Res Toxicol; 2008 Dec; 21(12):2370-8. PubMed ID: 19053323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of DNA adducts derived from riddelliine, a carcinogenic pyrrolizidine alkaloid.
    Chou MW; Jian Y; Williams LD; Xia Q; Churchwell M; Doerge DR; Fu PP
    Chem Res Toxicol; 2003 Sep; 16(9):1130-7. PubMed ID: 12971801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry.
    Deceuninck Y; Bichon E; Marchand P; Boquien CY; Legrand A; Boscher C; Antignac JP; Le Bizec B
    Anal Bioanal Chem; 2015 Mar; 407(9):2485-97. PubMed ID: 25627788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.