BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29501927)

  • 1. Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803.
    Miao R; Xie H; M Ho F; Lindblad P
    Metab Eng; 2018 May; 47():42-48. PubMed ID: 29501927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production.
    Xie H; Lindblad P
    Microb Cell Fact; 2022 Feb; 21(1):17. PubMed ID: 35105340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of photosynthetic isobutanol production in engineered cells of
    Miao R; Xie H; Lindblad P
    Biotechnol Biofuels; 2018; 11():267. PubMed ID: 30275907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isobutanol production in
    Miao R; Liu X; Englund E; Lindberg P; Lindblad P
    Metab Eng Commun; 2017 Dec; 5():45-53. PubMed ID: 29188183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803.
    Xie H; Kjellström J; Lindblad P
    Biotechnol Biofuels Bioprod; 2023 Sep; 16(1):134. PubMed ID: 37684613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria.
    Kobayashi S; Atsumi S; Ikebukuro K; Sode K; Asano R
    Microb Cell Fact; 2022 Jan; 21(1):7. PubMed ID: 34991586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production.
    Varman AM; Xiao Y; Pakrasi HB; Tang YJ
    Appl Environ Microbiol; 2013 Feb; 79(3):908-14. PubMed ID: 23183979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae.
    Milne N; van Maris AJ; Pronk JT; Daran JM
    Biotechnol Biofuels; 2015; 8():204. PubMed ID: 26628917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway.
    Gu J; Zhou J; Zhang Z; Kim CH; Jiang B; Shi J; Hao J
    Metab Eng; 2017 Sep; 43(Pt A):71-84. PubMed ID: 28802880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum.
    Lin PP; Mi L; Morioka AH; Yoshino KM; Konishi S; Xu SC; Papanek BA; Riley LA; Guss AM; Liao JC
    Metab Eng; 2015 Sep; 31():44-52. PubMed ID: 26170002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.
    Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Corynebacterium glutamicum for isobutanol production.
    Smith KM; Cho KM; Liao JC
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1045-55. PubMed ID: 20376637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pyruvate decarboxylase activity of IpdC is a limitation for isobutanol production by Klebsiella pneumoniae.
    Shu L; Gu J; Wang Q; Sun S; Cui Y; Fell J; Mak WS; Siegel JB; Shi J; Lye GJ; Baganz F; Hao J
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):41. PubMed ID: 35501883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isobutanol production by combined
    Gupta M; Wong M; Jawed K; Gedeon K; Barrett H; Bassalo M; Morrison C; Eqbal D; Yazdani SS; Gill RT; Huang J; Douaisi M; Dordick J; Belfort G; Koffas MAG
    Metab Eng Commun; 2022 Dec; 15():e00210. PubMed ID: 36325486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OptSSeq explores enzyme expression and function landscapes to maximize isobutanol production rate.
    Ghosh IN; Martien J; Hebert AS; Zhang Y; Coon JJ; Amador-Noguez D; Landick R
    Metab Eng; 2019 Mar; 52():324-340. PubMed ID: 30594629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.
    Tian X; Chen L; Wang J; Qiao J; Zhang W
    J Proteomics; 2013 Jan; 78():326-45. PubMed ID: 23079071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems.
    Cho DH; Kim HJ; Oh SJ; Hwang JH; Shin N; Bhatia SK; Yoon JJ; Jeon JM; Yang YH
    J Biotechnol; 2023 Apr; 367():62-70. PubMed ID: 37019156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of NADH-dependent nitrate assimilation in Synechococcus sp. PCC 7002 improves photosynthetic production of 2-methyl-1-butanol and isobutanol.
    Purdy HM; Pfleger BF; Reed JL
    Metab Eng; 2022 Jan; 69():87-97. PubMed ID: 34774761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.