These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 29501982)
1. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China. Liu Q; Chen B; Haderlein S; Gopalakrishnan G; Zhou Y Ecotoxicol Environ Saf; 2018 Jul; 155():50-58. PubMed ID: 29501982 [TBL] [Abstract][Full Text] [Related]
2. Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China. Chen M; Lu G; Wu J; Yang C; Niu X; Tao X; Shi Z; Yi X; Dang Z Ecotoxicol Environ Saf; 2018 Nov; 164():474-483. PubMed ID: 30144708 [TBL] [Abstract][Full Text] [Related]
3. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179 [TBL] [Abstract][Full Text] [Related]
4. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chen M; Lu G; Guo C; Yang C; Wu J; Huang W; Yee N; Dang Z Chemosphere; 2015 Jan; 119():734-743. PubMed ID: 25189685 [TBL] [Abstract][Full Text] [Related]
5. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647 [TBL] [Abstract][Full Text] [Related]
6. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China. Zhao H; Xia B; Qin J; Zhang J J Environ Sci (China); 2012; 24(6):979-89. PubMed ID: 23505864 [TBL] [Abstract][Full Text] [Related]
7. Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution. Chen M; Lu G; Wu J; Sun J; Yang C; Xie Y; Wang K; Deng F; Yi X; Dang Z Environ Res; 2020 Jul; 186():109490. PubMed ID: 32302871 [TBL] [Abstract][Full Text] [Related]
8. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina). Lecomte KL; Maza SN; Collo G; Sarmiento AM; Depetris PJ Environ Sci Pollut Res Int; 2017 Jan; 24(2):1630-1647. PubMed ID: 27796971 [TBL] [Abstract][Full Text] [Related]
9. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage. Xie Y; Lu G; Yang C; Qu L; Chen M; Guo C; Dang Z PLoS One; 2018; 13(1):e0190010. PubMed ID: 29304091 [TBL] [Abstract][Full Text] [Related]
10. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
11. Impact of acid mine drainages on surficial waters of an abandoned mining site. García-Lorenzo ML; Marimón J; Navarro-Hervás MC; Pérez-Sirvent C; Martínez-Sánchez MJ; Molina-Ruiz J Environ Sci Pollut Res Int; 2016 Apr; 23(7):6014-23. PubMed ID: 26347422 [TBL] [Abstract][Full Text] [Related]
12. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Valente TM; Leal Gomes C Sci Total Environ; 2009 Jan; 407(3):1135-52. PubMed ID: 19004477 [TBL] [Abstract][Full Text] [Related]
13. [Formation and environmental implications of iron-enriched precipitates derived from natural neutralization of acid mine drainage]. Zhou YF; Xie Y; Zhou LX Huan Jing Ke Xue; 2010 Jun; 31(6):1581-8. PubMed ID: 20698276 [TBL] [Abstract][Full Text] [Related]
14. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: examples from copper mining refuse, Touro, Spain. Civeira M; Oliveira ML; Hower JC; Agudelo-Castañeda DM; Taffarel SR; Ramos CG; Kautzmann RM; Silva LF Environ Sci Pollut Res Int; 2016 Apr; 23(7):6535-45. PubMed ID: 26635221 [TBL] [Abstract][Full Text] [Related]
15. Thallium(I) sequestration by jarosite and birnessite: Structural incorporation vs surface adsorption. Aguilar-Carrillo J; Herrera-García L; Reyes-Domínguez IA; Gutiérrez EJ Environ Pollut; 2020 Feb; 257():113492. PubMed ID: 31744683 [TBL] [Abstract][Full Text] [Related]
16. Remediation experiment of Ecuadorian acid mine drainage: geochemical models of dissolved species and secondary minerals saturation. Delgado J; Barba-Brioso C; Ayala D; Boski T; Torres S; Calderón E; López F Environ Sci Pollut Res Int; 2019 Dec; 26(34):34854-34872. PubMed ID: 31655982 [TBL] [Abstract][Full Text] [Related]
17. The impact of wetland on neutral mine drainage from mining wastes at Luanshya in the Zambian Copperbelt in the framework of climate change. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Nyambe I Environ Sci Pollut Res Int; 2018 Oct; 25(29):28961-28972. PubMed ID: 30109679 [TBL] [Abstract][Full Text] [Related]
18. Initial pH and K Song Y; Zhang J; Wang H Water Sci Technol; 2018 Dec; 78(10):2183-2192. PubMed ID: 30629546 [TBL] [Abstract][Full Text] [Related]
19. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation. Park JH; Kim BS; Chon CM Chemosphere; 2018 Jan; 191():245-252. PubMed ID: 29035796 [TBL] [Abstract][Full Text] [Related]