These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29501996)

  • 21. Enhanced electrorheological activity of polyaniline coated mesoporous silica with high aspect ratio.
    Noh J; Yoon CM; Jang J
    J Colloid Interface Sci; 2016 May; 470():237-244. PubMed ID: 26950396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispersion Stability and Electrorheological Properties of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether).
    Chin BD; Park OO
    J Colloid Interface Sci; 2001 Feb; 234(2):344-350. PubMed ID: 11161520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles.
    Zheng C; Lei Q; Zhao J; Zhao X; Yin J
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32235757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructure-Confined Mechanical and Electric Properties of the Electrorheological Fluids under the Oscillatory Mechanical Field.
    Hao T; Xu Y
    J Colloid Interface Sci; 1997 Jan; 185(2):324-31. PubMed ID: 9028885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-Temperature Interfacial Polymerization and Enhanced Electro-Responsive Characteristic of Poly(ionic liquid)s@polyaniline Core-shell Microspheres.
    Zheng C; Liu Y; Dong Y; He F; Zhao X; Yin J
    Macromol Rapid Commun; 2019 Sep; 40(17):e1800351. PubMed ID: 30085361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the Electro-Active Control of Nanocellulose-Based Functional Biolubricants.
    Delgado-Canto MA; Fernández-Silva SD; Roman C; García-Morales M
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46490-46500. PubMed ID: 32938182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation.
    Cao JG; Huang JP; Zhou LW
    J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles.
    Zheng C; Dong Y; Liu Y; Zhao X; Yin J
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions.
    Agafonov AV; Kraev AS; Kusova TV; Evdokimova OL; Ivanova OS; Baranchikov AE; Shekunova TO; Kozyukhin SA
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facile and fast synthesis of polyaniline-coated poly(glycidyl methacrylate) core-shell microspheres and their electro-responsive characteristics.
    Zhang WL; Piao SH; Choi HJ
    J Colloid Interface Sci; 2013 Jul; 402():100-6. PubMed ID: 23664394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric Field-Responsive Mesoporous Suspensions: A Review.
    Kwon SH; Piao SH; Choi HJ
    Nanomaterials (Basel); 2015 Dec; 5(4):2249-2267. PubMed ID: 28347119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electro-osmosis of electrorheological fluids.
    Dhar J; Bandopadhyay A; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053001. PubMed ID: 24329345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual Electrorheological and Magnetorheological Behaviors of Poly(N-methyl aniline) Coated ZnFe
    Kim HM; Jeong JY; Kang SH; Jin HJ; Choi HJ
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of core-shell structured metal-organic framework@PANI nanocomposite and its electrorheological properties.
    Wen Q; Ma L; Wang C; Wang B; Han R; Hao C; Chen K
    RSC Adv; 2019 May; 9(25):14520-14530. PubMed ID: 35519353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrorheology of graphene oxide.
    Zhang WL; Liu YD; Choi HJ; Kim SG
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2267-72. PubMed ID: 22476845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties.
    Shin K; Kim D; Cho JC; Lim HS; Kim JW; Suh KD
    J Colloid Interface Sci; 2012 May; 374(1):18-24. PubMed ID: 22365839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.