These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29502414)

  • 1. DLS Setup for in Situ Measurements of Photoinduced Size Changes of Microgel-Based Hybrid Particles.
    Lehmann M; Tabaka W; Möller T; Oppermann A; Wöll D; Volodkin D; Wellert S; Klitzing RV
    Langmuir; 2018 Mar; 34(12):3597-3603. PubMed ID: 29502414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods.
    Tsai DH; DelRio FW; Keene AM; Tyner KM; MacCuspie RI; Cho TJ; Zachariah MR; Hackley VA
    Langmuir; 2011 Mar; 27(6):2464-77. PubMed ID: 21341776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of gold nanoparticles within thermoresponsive microgel particles: effect of crosslinking density.
    Dong Y; Ma Y; Zhai T; Zeng Y; Fu H; Yao J
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6283-9. PubMed ID: 19205195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.
    Zheng T; Bott S; Huo Q
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21585-94. PubMed ID: 27472008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity.
    Bhol P; Mohanty PS
    J Phys Condens Matter; 2020 Feb; 33(8):084002. PubMed ID: 33017813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the pulsed-laser-induced size reduction of Au and Ag nanoparticles via changes in the external pressure, laser intensity, and excitation wavelength.
    Werner D; Hashimoto S
    Langmuir; 2013 Jan; 29(4):1295-302. PubMed ID: 23259708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-responsive properties of poly(NIPAM-co-AAc) microgel particles with absorbed, hydrophobically modified organic salts.
    Fan K; Bradley M; Vincent B
    J Colloid Interface Sci; 2012 Feb; 368(1):287-91. PubMed ID: 22137172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoresponsive surfactants in microgel dispersions.
    Bradley M; Vincent B; Warren N; Eastoe J; Vesperinas A
    Langmuir; 2006 Jan; 22(1):101-5. PubMed ID: 16378407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous [AuCl
    Rodrigues CJ; Bobb JA; John MG; Fisenko SP; El-Shall MS; Tibbetts KM
    Phys Chem Chem Phys; 2018 Nov; 20(45):28465-28475. PubMed ID: 30411753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals.
    Jones CD; Lyon LA
    J Am Chem Soc; 2003 Jan; 125(2):460-5. PubMed ID: 12517159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid microgels photoresponsive in the near-infrared spectral range.
    Gorelikov I; Field LM; Kumacheva E
    J Am Chem Soc; 2004 Dec; 126(49):15938-9. PubMed ID: 15584708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.
    Ghugare SV; Chiessi E; Telling MT; Deriu A; Gerelli Y; Wuttke J; Paradossi G
    J Phys Chem B; 2010 Aug; 114(32):10285-93. PubMed ID: 20701364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local control over phase transitions in microgel assemblies.
    St John AN; Lyon LA
    J Phys Chem B; 2008 Sep; 112(36):11258-63. PubMed ID: 18710277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic imaging of a single gold nanoparticle in liquid irradiated by off-resonance femtosecond laser.
    Boutopoulos C; Hatef A; Fortin-Deschênes M; Meunier M
    Nanoscale; 2015 Jul; 7(27):11758-65. PubMed ID: 26104482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FCC-HCP coexistence in dense thermo-responsive microgel crystals.
    Karthickeyan D; Joshi RG; Tata BVR
    J Chem Phys; 2017 Jun; 146(22):224503. PubMed ID: 29166046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer decorated gold nanoparticles in nanomedicine conjugates.
    Capek I
    Adv Colloid Interface Sci; 2017 Nov; 249():386-399. PubMed ID: 28259207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonication of insulin-loaded microgel particles produced by internal gelation: impact on particle's size and insulin bioactivity.
    Santos AC; Cunha J; Veiga F; Cordeiro-da-Silva A; Ribeiro AJ
    Carbohydr Polym; 2013 Nov; 98(2):1397-408. PubMed ID: 24053820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving power of dynamic light scattering for protein and polystyrene nanoparticles.
    Karow AR; Götzl J; Garidel P
    Pharm Dev Technol; 2015 Jan; 20(1):84-9. PubMed ID: 24773236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.