BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 29503074)

  • 1. Dimerization of the Pragmin Pseudo-Kinase Regulates Protein Tyrosine Phosphorylation.
    Lecointre C; Simon V; Kerneur C; Allemand F; Fournet A; Montarras I; Pons JL; Gelin M; Brignatz C; Urbach S; Labesse G; Roche S
    Structure; 2018 Apr; 26(4):545-554.e4. PubMed ID: 29503074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility.
    Senda Y; Murata-Kamiya N; Hatakeyama M
    Cancer Sci; 2016 Jul; 107(7):972-80. PubMed ID: 27116701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors.
    Safari F; Murata-Kamiya N; Saito Y; Hatakeyama M
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14938-43. PubMed ID: 21873224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early emergence of negative regulation of the tyrosine kinase Src by the C-terminal Src kinase.
    Taskinen B; Ferrada E; Fowler DM
    J Biol Chem; 2017 Nov; 292(45):18518-18529. PubMed ID: 28939764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common Mode of Remodeling AAA ATPases p97/CDC48 by Their Disassembling Cofactors ASPL/PUX1.
    Banchenko S; Arumughan A; Petrović S; Schwefel D; Wanker EE; Roske Y; Heinemann U
    Structure; 2019 Dec; 27(12):1830-1841.e3. PubMed ID: 31648844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.
    Fujita S; Cho SH; Yoshida A; Hasebe F; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2017 Sep; 491(2):409-415. PubMed ID: 28720495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking-based substrate recognition by the catalytic domain of a protein tyrosine kinase, C-terminal Src kinase (Csk).
    Lee S; Ayrapetov MK; Kemble DJ; Parang K; Sun G
    J Biol Chem; 2006 Mar; 281(12):8183-9. PubMed ID: 16439366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of pseudokinase PEAK1 (Sugen kinase 269) reveals an unusual catalytic cleft and a novel mode of kinase fold dimerization.
    Ha BH; Boggon TJ
    J Biol Chem; 2018 Feb; 293(5):1642-1650. PubMed ID: 29212708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SHEDding light on the role of Pragmin pseudo-kinases in cancer.
    Roche S; Lecointre C; Simon V; Labesse G
    Am J Cancer Res; 2019; 9(2):449-454. PubMed ID: 30906642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pseudo-Kinase Double Act.
    Preuß F; Mathea S; Knapp S
    Structure; 2018 Apr; 26(4):527-528. PubMed ID: 29617648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Basis for Auto-Inhibition of the NDR1 Kinase Domain by an Atypically Long Activation Segment.
    Xiong S; Lorenzen K; Couzens AL; Templeton CM; Rajendran D; Mao DYL; Juang YC; Chiovitti D; Kurinov I; Guettler S; Gingras AC; Sicheri F
    Structure; 2018 Aug; 26(8):1101-1115.e6. PubMed ID: 29983373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands.
    Linossi EM; Li K; Veggiani G; Tan C; Dehkhoda F; Hockings C; Calleja DJ; Keating N; Feltham R; Brooks AJ; Li SS; Sidhu SS; Babon JJ; Kershaw NJ; Nicholson SE
    Nat Commun; 2021 Dec; 12(1):7032. PubMed ID: 34857742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of Tousled-Like Kinase 2 activation.
    Mortuza GB; Hermida D; Pedersen AK; Segura-Bayona S; López-Méndez B; Redondo P; Rüther P; Pozdnyakova I; Garrote AM; Muñoz IG; Villamor-Payà M; Jauset C; Olsen JV; Stracker TH; Montoya G
    Nat Commun; 2018 Jun; 9(1):2535. PubMed ID: 29955062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic activity of human guanylate-binding protein 1 coupled to the release of structural restraints imposed by the C-terminal domain.
    Ince S; Zhang P; Kutsch M; Krenczyk O; Shydlovskyi S; Herrmann C
    FEBS J; 2021 Jan; 288(2):582-599. PubMed ID: 32352209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain.
    Emptage RP; Lemmon MA; Ferguson KM; Marmorstein R
    Structure; 2018 Aug; 26(8):1137-1143.e3. PubMed ID: 30099988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical characterization of the ETV6 PNT domain polymerization interfaces.
    Gerak CAN; Cho SY; Kolesnikov M; Okon M; Murphy MEP; Sessions RB; Roberge M; McIntosh LP
    J Biol Chem; 2021; 296():100284. PubMed ID: 33450226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.
    Brown BL; Kardon JR; Sauer RT; Baker TA
    Structure; 2018 Apr; 26(4):580-589.e4. PubMed ID: 29551290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features of the plant N-recognin ClpS1 and sequence determinants in its targets that govern substrate selection.
    Aguilar Lucero D; Cantoia A; Sánchez-López C; Binolfi A; Mogk A; Ceccarelli EA; Rosano GL
    FEBS Lett; 2021 Jun; 595(11):1525-1541. PubMed ID: 33792910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of actin monomer re-charging by cyclase-associated protein.
    Kotila T; Kogan K; Enkavi G; Guo S; Vattulainen I; Goode BL; Lappalainen P
    Nat Commun; 2018 May; 9(1):1892. PubMed ID: 29760438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tyrosine kinase Csk dimerizes through Its SH3 domain.
    Levinson NM; Visperas PR; Kuriyan J
    PLoS One; 2009 Nov; 4(11):e7683. PubMed ID: 19888460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.