These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29503659)

  • 1. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.
    Kim YX; Ranathunge K; Lee S; Lee Y; Lee D; Sung J
    Front Plant Sci; 2018; 9():193. PubMed ID: 29503659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water uptake by roots: effects of water deficit.
    Steudle E
    J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.
    Ranathunge K; Kim YX; Wassmann F; Kreszies T; Zeisler V; Schreiber L
    Ann Bot; 2017 Mar; 119(4):629-643. PubMed ID: 28065927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors.
    Tylová E; Pecková E; Blascheová Z; Soukup A
    Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.
    Kreszies T; Schreiber L; Ranathunge K
    J Plant Physiol; 2018 Aug; 227():75-83. PubMed ID: 29449027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The exodermis: a variable apoplastic barrier.
    Hose E; Clarkson DT; Steudle E; Schreiber L; Hartung W
    J Exp Bot; 2001 Dec; 52(365):2245-64. PubMed ID: 11709575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of Water and Solutes across Maize Roots Modified by Puncturing the Endodermis (Further Evidence for the Composite Transport Model of the Root).
    Steudle E; Murrmann M; Peterson CA
    Plant Physiol; 1993 Oct; 103(2):335-349. PubMed ID: 12231941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The exodermis: A forgotten but promising apoplastic barrier.
    Liu T; Kreszies T
    J Plant Physiol; 2023 Nov; 290():154118. PubMed ID: 37871477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suberized transport barriers in plant roots: the effect of silicon.
    Kreszies T; Kreszies V; Ly F; Thangamani PD; Shellakkutti N; Schreiber L
    J Exp Bot; 2020 Dec; 71(21):6799-6806. PubMed ID: 32333766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.
    Shen J; Xu G; Zheng HQ
    Protoplasma; 2015 Jan; 252(1):173-80. PubMed ID: 24965373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability of Iris germanica's multiseriate exodermis to water, NaCl, and ethanol.
    Meyer CJ; Peterson CA; Steudle E
    J Exp Bot; 2011 Mar; 62(6):1911-26. PubMed ID: 21131546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial hydraulic conductivity along developing onion roots.
    Barrowclough DE; Peterson CA; Steudle E
    J Exp Bot; 2000 Mar; 51(344):547-57. PubMed ID: 10938811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development, dilation and subdivision of cortical layers of gentian (Gentiana asclepiadea) root.
    Šottníková A; Lux A
    New Phytol; 2003 Oct; 160(1):135-143. PubMed ID: 33873523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
    Zimmermann HM; Hartmann K; Schreiber L; Steudle E
    Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological roles of Casparian strips and suberin in the transport of water and solutes.
    Calvo-Polanco M; Ribeyre Z; Dauzat M; Reyt G; Hidalgo-Shrestha C; Diehl P; Frenger M; Simonneau T; Muller B; Salt DE; Franke RB; Maurel C; Boursiac Y
    New Phytol; 2021 Dec; 232(6):2295-2307. PubMed ID: 34617285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers.
    Li B; Kamiya T; Kalmbach L; Yamagami M; Yamaguchi K; Shigenobu S; Sawa S; Danku JM; Salt DE; Geldner N; Fujiwara T
    Curr Biol; 2017 Mar; 27(5):758-765. PubMed ID: 28238658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sites of entry of water into the symplast of maize roots.
    Varney GT; McCully ME; Canny MJ
    New Phytol; 1993 Dec; 125(4):733-741. PubMed ID: 33874454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt stress reduces root water uptake in barley (Hordeum vulgare L.) through modification of the transcellular transport path.
    Knipfer T; Danjou M; Vionne C; Fricke W
    Plant Cell Environ; 2021 Feb; 44(2):458-475. PubMed ID: 33140852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.